
Links: Linking Theory to
Practice for the Web

Case for Support

Philip Wadler
University of Edinburgh

Summary
e-Commerce, e-Government, e-Science — the coining of
such words reflects the growing importance of the World
Wide Web in all aspects of our lives. Consumer spending
on the web in Britain exceeds£12 billion a year.

A typical web program involves three tiers. The front end
is the browser running on your computer. The middle tier
is a server, executing the logic that controls your interaction
with the web site. The back end is a database, providing the
information you wish to access, such as a catalog of items
for purchase, a collection of government records, or a store
of scientific data.

The programmer must master a myriad of languages: the
logic is written in a mixture of Java, Perl, PHP, and Python;
the forms in HTML, XML, and JavaScript; and the queries
are written in SQL or XQuery. There is no easy way to link
these — to be sure that a form in HTML or a query in SQL
produces data of a type that the logic in Java expects. This is
called theimpedance mismatchproblem.

Links will solve the impedance mismatch problem by
providing a single language for all three tiers. The system
will be responsible for distributing tasks among tiers and
translating into suitable languages for each tier — for in-
stance, translating part of a program into JavaScript to run
in the browser, Java to run on the server, and SQL to run
on the database. Links will incorporate ideas proven in other
programming languages: support for database programming
from Kleisli, for XML programming from XDuce, for web
interaction from PLT Scheme, and for distribution from Er-
lang. It will be developed by a consortium, as were ML and
Haskell. Like all of these languages, it will be functional.

Support is sought for one PhD studentship and one RA
for three years, costing£292K for 36 months. Letters of
support are attached from two commercial web firms, LShift
and Run Deep.

I. Previous Track Record
Applicants

Philip Wadler (Principal Investigator) Wadler is Profes-
sor of Theoretical Computer Science in the School of In-
formatics of the University of Edinburgh. His career spans
academia and industry, with degrees from Stanford and
Carnegie-Mellon, posts at Oxford, Glasgow, Bell Labs, and
Avaya Labs, and guest professorships in Sydney, Copen-
hagen, and Paris.

Wadler possesses an unmatched track record for convert-
ing theory into practice, with major contributions to XQuery,
Java, and Haskell.XQueryis the forthcoming W3C standard
for querying XML data (think of it as ‘SQL for XML’).
Wadler, working with Ferńandez and Siḿeon, put forward
proposals for the syntax, core algebra, formal semantics,
and static type system for XQuery, now incorporated into
the standard.Java 5, released in September 2004, con-
tains generic types — the first change to the core language
since 1997. Wadler, together with Bracha, Odersky, and
Stoutamire, devised GJ (Generic Java), the basis for Sun’s
design.Haskell is the most widely used language for lazy
functional programming. Wadler served as first editor of the
Haskell report, and contributed Haskell’s two main language
innovations, type classes (joint with Blott) and monads (joint
with Peyton Jones); the latter won the Most Influential POPL
Paper Award (2003 for 1993). Languages influenced by
Haskell include Isabelle (theorem proving), Mercury (logic
programming), Curry and G̈odel (logic-functional program-
ming), and Hal (constraint programming).

Wadler ranks 70 on Citeseer’s list of Most-Cited Authors
in Computer Science (May 2005). He is a Fellow of the
Royal Society of Edinburgh and a Royal Society Wolfson
Merit Fellow. Wadler co-founded theJournal of Functional
Programming, serving as Editor-in-Chief until 2004. He sits
on the Executive Committee of ACM SIGPLAN, and served
as program chair for ICFP (2000), Plan-X (2002), PADL
(2003), Erlang (2004), and FOOL (2005). Invited speak-
ing engagements include POPL (Albuquerque, 1992), ILPS
(Portland, 1995), Software Reuse (Victoria, 1998), Domain
Specific Languages (Austin, 1999), TCS (New Delhi, 2000),
ICDT (London, 2001), VLDB (Rome, 2001), FLOPS (Aizu,
2002), FGUC (London, 2004), and RTA (Nara, 2005).

Peter Buneman (Co-investigator) Buneman is Professor
of Database Systems in the School of Informatics at the
University of Edinburgh. His work in computer science has
focused mainly on databases and programming languages,
specifically: active databases, database semantics, approxi-
mate information, query languages, types for databases, data
integration, bioinformatics and semistructured data — an
area in which he has co-authored a book. He has recently
worked on issues associated with scientific databases such
as data provenance, archiving and annotation. He has served
on numerous programme committees, editorial boards and
working groups, and has been programme chair for ACM
SIGMOD, ACM PODS and ICDT. He is a fellow of the
Royal Society of Edinburgh, a fellow of the ACM and the
recipient of a Royal Society Wolfson Merit Award. He is re-
search director of the UK Digital Curation Centre.

Before joining the University of Edinburgh, Peter Bune-
man was a Professor at the Department of Computer and
Information Science at the University of Pennsylvania. He
received his undergraduate degree from Cambridge Univer-
sity, his graduate degree from the University of Warwick,
and he did postdoctoral work at the University of Edinburgh.
He has held visiting positions at the University of Glasgow,

1



Imperial College, Kyoto University and INRIA. In addition
to computer science he has made contributions to graph the-
ory and to the mathematics of phylogeny.

Don Sannella (Co-investigator) Sannella received his
PhD in Computer Science from the University of Edinburgh
in 1982 where he has worked ever since, being appointed
Professor in 1998. His research interests include the de-
sign of algebraic specification languages and functional pro-
gramming languages, foundations of algebraic specification
and formal software development, and more recently global
computation and resource certification for mobile code. He
has published more than 60 papers in journals and interna-
tional conferences and has held a series of grants since 1985
for research projects in the area of verification and formal
development of programs including an EPSRC Advanced
Fellowship in 1992–1997 and an RSE/SOEID Fellowship
during 1998. He is editor-in-chief ofTheoretical Computer
Science(responsible for part B: Logic, Semantics and The-
ory of Programming), founder, former chairman and cur-
rent treasurer of the ETAPS conference series, and is on the
Council of the European Association for Theoretical Com-
puter Science. He is Director of the Informatics Graduate
School at Edinburgh University.

Ian Stark (Co-investigator) Stark is a Lecturer in Com-
puter Science in the School of Informatics at the University
of Edinburgh, where he also holds an EPSRC Advanced Re-
search Fellowship. He received his PhD from the University
of Cambridge in 1995, and subsequently held a Marie Curie
Fellowship in Pisa and worked in the BRICS research insti-
tute at the University of Aarhus. His research interests are
in foundational models of programming languages and con-
currency; in particular types, operational reasoning and mo-
bile processes. He has nineteen published papers in journals
and conferences. He has served on the programme commit-
tee for the international conferences TACS and MFPS. Pre-
viously he worked on the EC-funded EuroFoCS, CLICS-II
and APPSEM projects and he has set up a .NET laboratory
in Edinburgh with funding from Microsoft. As well as his
research fellowship, he holds an EPSRC grant on Reasoning
about Names and Identity in Programming Languages, and
is Edinburgh site leader for the EC-funded Mobius project
on secure mobile code.

Sam Lindley (Research Assistant)Sam Lindley obtained
a BA in computation from the University of Oxford in 1998.
From 1996 until 2000 he worked for London-based web
agency Red Snapper, where he helped design and implement
their content management system. This has been used suc-
cessfully to produce and maintain websites for a range of
blue-chip clients. In 2000 he began his PhD in Computer
Science at the University of Edinburgh. This was completed
at the beginning of 2005. During his PhD, in 2002 he ob-
tained a three-month Marie Curie Fellowship to visit the
University of Aarhus, and at the end of 2003 he took up a
three-month postgraduate internship at Microsoft Research
Cambridge. His research interests include programming lan-
guage semantics and compilers for functional programming

languages. Since completing his PhD he has been working
for Red Snapper as a freelance consultant. He has been de-
veloping a system for reverse-engineering existing websites
for import into their content management system.

Host Organisation

The University of Edinburgh School of Informatics holds
top ratings for both teaching and research, including the
only 5*A research rating for Computer Science in Britain.
The School is organized into institutes, many of which will
contribute to Links.

Laboratory for Foundations of Computer ScienceLFCS
studies the theory underlying programming languages. Its
members include a Fellow of the Royal Society and four
EPSRC Advanced Research Fellows. Wadler’s contributions
to Haskell, Java, and XQuery draw heavily on the work of
LFCS, and so will the design of Links. Particularly rele-
vant are Buneman’s work on semi-structured data and XML
databases, Plotkin’s work on monads, and Sannella’s work
on safe mobile code.

Institute for Communicating and Collaborative Systems
ICCS plays a leading role in developing and applying XML
standards. Particularly relevant is Thompson’s work on
XML Schema and XSLT.

Centre for Intelligent Systems and their ApplicationsCISA
expertise includes web agents and the semantic web. Partic-
ularly relevant is Robertson’s work on programming lan-
guages for expressing web protocols.

Edinburgh also hosts two national institutes and an en-
terprise unit designed to facilitate communication between
the computing and science communities, and between aca-
demics and industry. They provide perfect venues to dissem-
inate Links to academic and industrial communities and to
expose Links to new application areas.

The National e-Science CentreNeSC is developing the
infrastructure to enable scientists to share petabytes of data
and teraflops of computation over the Internet, initially
funded at£5.5M. NeSC expertise in web services and the
Grid will be particularly helpful, the former because it is
crucial for Links to interface smoothly with web services,
the latter because it will help Links broaden its concerns to
wider aspects of global computing.

The National Digital Curation Centre NDCC is a na-
tional resource for archiving and accessing digital data, ini-
tially funded at£3.2M. Buneman of LFCS is Director of Re-
search. NDCC expertise in XML and web publishing will
help ground Links in real applications.

Edinburgh Research and Innovation ERI provides ad-
vice on exploiting the commercial potential of research, and
has been instrumental in finding industrial collaborators for
Links.

2



II. Proposed Research

Background and Programme
Ask a room of researchers whether they have purchased
goods or services online. Every hand will go up. Now ask
whether they have everfailed to complete some online pur-
chase because of a fault in the web site software. Every hand
will go up again.

Consumer spending on the web exceeded£12 billion
per year in Britain, growing nearly 20 times faster than
traditional retail [28]. Yet web programming remains an
immature art, expensive and error prone. Even major sites
like Orbitz, Apple, Continental, Hertz, and Microsoft suffer
from fundamental problems [21].

Not only business, but healthcare, government, educa-
tion, and science are being transformed by the web. Mobile
phones, wireless computing, petabyte data resources, remote
sensors, and intelligent devices extend the scope and nature
of the Internet. Each system must interact with others, rang-
ing from financial institutions to malicious viruses. One re-
cent policy document refers to the emergence of a Global
Ubiquitous Computer, the largest engineered artefact in hu-
man history [40].

We propose to design and implement Links, a program-
ming language for web applications and web services. Links
will apply techniques pioneered in other languages in order
to increase the capability and reliability of web sites while
decreasing the cost of development.

A quarter century ago, Burstall, MacQueen, and Sannella
at Edinburgh introduced an influential programming lan-
guage, Hope [12]. Hope was named for Hope Park Square,
located near the University on the Meadows. Links is named
for the Bruntsfield Links, located at the other end of the the
Meadows and site of the world’s first public golf course.

Three tiers A typical web system is organized in three
tiers, each running on a separate computer. (See figure at
top of this page.) Logic on the middle-tier server generates
forms to send to a front-end browser and queries to send to
a back-end database. The programmer must master a myriad
of languages: the logic is written in a mixture of Java, Perl,
PHP, and Python; the forms in HTML, XML, and JavaScript;
and the queries are written in SQL or XQuery. There is no
easy way to link these — to be sure that a form in HTML or
a query in SQL produces data of a type that the logic in Java
expects. This is called theimpedance mismatchproblem.

Links will solve the impedance mismatch problem by
providing a single language for all three tiers. The system
will be responsible for distributing tasks among tiers and
translating into suitable languages for each tier — for in-
stance, translating parts of a program into JavaScript to run
in the browser and SQL to run on the database. Links will
incorporate ideas proven in other programming languages:
support for database programming from Kleisli, for XML
programming from XDuce, for web interaction from PLT
Scheme, and for distribution from Erlang. It will be devel-
oped by a consortium, as were ML and Haskell. Like all of
these languages, it will be functional.

Browser
(HTML,XML,JavaScript)

6

form

?

answer

Server
(Java,Perl,PHP,Python)

6
query

?

answer

Database
(SQL,XQuery)

Figure 1. Three-tier model

Database programming Kleisli was developed by Bune-
man, Wong, and others, based on comprehensions for database
query languages (which in turn are based on Wadler’s work
on monads) [11, 29, 48]. Kleisli has been used to solve
database integration problems that otherwise have proven
intractable, has been applied to a range of problems in
bioinformatics, and is sold as a commercial product. Other
database systems that apply comprehensions for querying
include Erlang’s Mnesia [47] and work by Grust [25].

Links will include a comprehension feature and adopt
techniques from Kleisli and Mnesia to compile these into
efficient access to SQL and XQuery databases. Programmers
writing middle-tier logic in Links need not learn SQL or
XQuery: instead they express queries with comprehensions,
from which the Links compiler extracts optimized SQL and
XQuery to send to back-end databases.

XML programming XDuce was developed by Pierce,
Hosoya, and others, based on regular expressions types
for XML [26, 27]. XML types were further developed by
Wadler and others in XQuery [16, 41, 49], by Schwartzbach
and others in Bigwig and JWIG [5, 10, 13, 39], by Castagna
and others in CDuce [8], and by Pierce and others in Xtatic
[24]; a survey of type systems for XML was published by
Møller and Schwartbach [32].

Links will support XML processing using regular expres-
sion patterns and types, based on techniques developed for
XDuce and other languages. As a special case of this, string
pattern matching will be supported as in Perl or Python,
with regular expressions providing static types for strings
[14, 24]. HTML will be supported as a dialect of XML.

Web interaction Programming web interfaces is tricky and
prone to error. For example, Felleisen and others [22] doc-
ument a problem with comparison shopping on Orbitz: a
shopper clicks on a flight and sees its price and details appear
in a second window, returns to the first window and clicks on
another flight and sees its price and details appear in a third

3



window, returns to the second window and clicks submit —
and ends up buying the flight displayed in thethird window,
not the second. They observed similar problems on web sites
for Apple, Continental, Hertz, and Microsoft, indicating that
this is a fundamental problem rather than a rare bug.

The notion ofcontinuationfrom functional programming
has been applied by a number of researchers to improve in-
teraction with a web client, including Quiennec [38], Gra-
ham [20] (in a commercial system sold to Yahoo and widely
used for building web stores), Felleisen and others [21, 22,
23], and Thiemann [43].

Links will incorporate language features to support web
interaction, usingcontinuationsto capture the state of the in-
teraction, andtypesto ensure consistency between the client
and the server. Felleisen and others [21] have proposed a
methodology for developing web applications in Java by
hand, based oncontinuation passing styleanddefunctional-
ization. We will apply the same techniques to compile Links
programs. This will result inscalableprograms that main-
tain session state in the client rather than the server. Only a
few commercial web tools (such as ASP.NET) produce code
that is scalable in this sense; many commercial web tools
(like J2EE) and most research web tools (including current
releases of PLT Scheme [23] and Mozart QHTML [15]) are
not scalable in this sense.

Rich clients Increasingly, web applications designers are
migrating work into the browser. “Rich client” systems in-
clude Google Mail, Google Maps, and the Mozilla Amazon
Browser, using a new style of interaction recently dubbed
“Ajax” [19]. A special-purpose language for checking values
in the clients was developed by Schwartzbach and others for
Bigwig [4], and techniques for transforming code to move
computation into clients have been developed by Neubauer
and Thiemann in Haskell [33].

Compiling from Links into JavaScript (or other languages
available on a client, such as Java or Flash) is a straightfor-
ward application of compiling technology. Research is re-
quired to determine to what extent computation can be au-
tomatically migrated from server to client and to what ex-
tent this needs to be under the control of the programmer. In
some cases, Links may compile two versions of the code
from a single source, one that migrates computation into
JavaScript on the client (for improved response), and one
that retains computation on the server (for clients that do not
support JavaScript, or that have disabled it). In some cases,
the JavaScript version may offer better interaction than the
server version; research is required into how a single source
might specify two levels of interaction.

Concurrency and distribution The functional language
Erlang [1, 2] is used in Ericsson’s AXD301 ATM phone
switch. It is the market leader in its segment, used by British
Telecom in their telephony and data backbone, the world’s
largest telephony over ATM network. The AXD301 has
99.9999999% (nine 9s) reliability, one of the most reliable
switches ever made. It contains 1.7 million lines of Erlang,
making it the largest functional program ever written. Er-

lang is used in a number of other market leading products,
including Ericsson’s GPRS and Alteon’s Accelerator.

Traditional concurrent programs use operating system
threads (up to 2000 on a single processor) and shared data
protected by semaphore. Erlang supports lightweight pro-
cesses (up to 30,000 on a single processor) and “share noth-
ing” concurrency where the only way processes can ex-
change data is by explicit message passing. Avoiding shar-
ing eases both distribution and reliability. Because there is no
shared data, it is relatively easy to arrange to move processes
to another machine, to support distribution or scaling. Reli-
ability is increased by structuring programs as “worker” and
“observer” processes — the observer monitors the worker
and performs error recovery if something goes wrong. The
worker and observer can run on the same machine, or on sep-
arate machines to support fault-tolerance. (Another language
that supports lightweight processes and “share nothing” con-
currency is Mozart [15, 44], but it does not offer support for
reliability through workers and observers.)

Erlang’s OTP system is structured around a set of design
principles that support the creation of distributed and reli-
able systems. Using this framework, a programmer can code
a naive, sequential server, and then instantiate it as a reli-
able, replicated server. This is far in advance over the sup-
port provided by Sun’s Java and its J2EE infrastructure, or
Microsoft’s C] and its .NET infrastructure.

Links will adopt the key features of the distribution model
of Erlang, and successful Erlang design principles from the
published open source implementation and libraries. Wadler
designed one of the first type systems for Erlang [31], and
served as program chair of the 2004 Erlang workshop.

Links differs from Erlang in that it is statically typed.
Numerous process algebras offer a foundational basis for
distribution with types. Links will base its design on the
Join calculus [17], as successfully used in JoCaml [18] and
Polyphonic C][6], and on Timber [34], a typed language
with communicating objects inspired by Erlang.

Functional programming Links will be a typed, func-
tional language. Query optimization in Kleisli, pattern match-
ing in XDuce, continuation-based web interfaces in Scheme,
and distribution in Erlang all work better with immutable
values rather than with mutable objects. Types ensure con-
sistency between forms in the browser, logic in the server,
and queries on the database; and between the two ends of
a channel in a distributed program. With the exception of
Haskell, all the functional languages listed above are strict;
Links will also be strict, with support for lazy evaluation
where it is required.

We intend to take ideas from both the Haskell and ML
communities. Monads in Haskell delimit the use of side ef-
fects, while ML makes it easy to insert a side effect at any
point in a program. We hope to get the best of both worlds by
permitting side effects at any point but using an effect type
system to control their use, building on work relating mon-
ads and effects by Wadler and Thiemann [46]. Strict eval-
uation in ML is better suited to a distributed environment,

4



but lazy evaluation in Haskell is useful for stream process-
ing. We will use a strict language with built-in support for
laziness, as suggested by Wadler, Taha, and MacQueen [45].

Related work Other languages for web programming in-
clude Xtatic [24], Scala [35, 36], Mozart [15, 44], SML.NET
[7], F][42], and Cω (based on Polyphonic C] [6] and Xen
[9]). Like Links, these languages combine ideas from the
XML, object-oriented, and functional programming com-
munities, and Links will benefit from fruitful interactions
with these efforts. However, none of these languages shares
Links’ objective of generating code for all three tiers of a
web application from a single source — scripts for the front-
end client, logic for the middle-tier server, and queries for
the back-end database. We expect that providing a single,
unified language to replace the current multiplicity of lan-
guages will be what attracts users to Links.

Consortium Dozens of new programming languages are
introduced each year, and few of these see widespread up-
take. To ensure that Links develops a significant user com-
munity, we will form a consortium of research groups to de-
velop and promote Links. This strategy has proved effective
for programming languages since Algol 60, and was used
to good effect by ML and Haskell. The Links consortium
will build on these successes, drawing on members of both
the ML and Haskell communities. Unlike the previous ML
and Haskell efforts, Links is aimed at exploiting the power
of functional programming in specific application areas. The
goal here is ambitious: not to be the next ML or Haskell, but
to be the next Python or Java.

A workshop on Links took place on April 2005, colocated
with ETAPS. The call for participation was a collaborative
effort, signed by Xavier Leroy (INRIA, Paris), Simon Peyton
Jones (Microsoft, Cambridge), Benjamin Pierce (University
of Pennsylvania), and Philip Wadler. Despite minimal pub-
licity, forty researchers attended, and many others registered
an interest in the project. An initial design team has been
formed, consisting of Leroy, Pierce, Martin Odersky (EPFL,
Lausanne), and Wadler.

Links has already attracted attention from the devel-
oper community (see discussion on Lambda the Ultimate
or comp.lang.functional). By seeking early feedback from
this community we hope to better suit the design of Links
to its target audience. We will use weblogs, web surveys,
and web tools such as Bugzilla to seek feedback on design
choices — particularly on choice of syntax, which seems to
be inordinately important to the success of a language.

Advisory committee We intend to form an advisory com-
mittee from members in industry concerned with web de-
velopment. The committee will explain problems the devel-
oper community finds particularly important, give feedback
on the Links design, and suggest realistic test cases. For in-
stance, our attention was drawn to the scalability problem
by interactions with this community. Letters of support are
attached from two commercial web firms, LShift and Run
Deep.

Programme and methodology
Current status We already have a partial design for Links,
tackling some of the points above, together with a prototype.

Gilles Dubochet, an MSc student from Lausanne sent by
Odersky, worked under Wadler’s supervision in Edinburgh,
August 2004–February 2005. He reimplemented much of
the Kleisli system, working from published descriptions.
Some explanations are difficult to get in print, so we were
greatly aided by a visit from Limsoon Wong, a principal
implementor of the original Kleisli system. The original
Kleisli system used a non-standard approach to record and
sum types. Dubochet’s systematically uses row types for
records and sum, based on a tutorial description by Pottier
and Ŕemy [37].

Jeremy Yallop, a PhD student, began work under Wadler’s
supervision in September 2004. He first developed a proto-
type compiler from Links to JavaScript, then integrated this
with Dubochet’s code. We now have a rudimentary proto-
type that can generate JavaScript when all code is to run in
the client and can partition code to run in the client or server
as appropriate.

As noted above, recently a design team consisting of
Leroy, Odersky, Pierce, and Wadler has been formed. The
design team will work in close consultation with others,
including Yallop at Edinburgh and Frisch at INRIA.

Research plan Yallop will continue to work on Links
through his second and third year (he is referred to as PhD
1 in the plan below). The proposal calls for funding one ad-
ditional PhD student (referred to as PhD 2) and one RA. We
have lined up likely candidates for these posts, Ezra Cooper
for the PhD, and Sam Lindley for the RA.

The tasks listed below are diagrammed in the workplan
at the end of this submission. We expect to adapt the plan
flexibly as work proceeds.

Interaction. What form of interaction model should Links
support? JavaScript treats DOM trees as mutable structures.
We have devised a simple model where DOM trees are im-
mutable. This requires additional computation but prelimi-
nary work suggests this has adequate performance and ex-
pressiveness. We need to perform a more thorough evalu-
ation, and to extend the model to deal with Ajax-style in-
teraction. For a case study, we may attempt to re-build the
Google Maps interface in Links. [PhD 1, work currently in
progress.]

Partitioning and security. How should computation be
distributed in a web application? How does this interact
with security? The prototype allocates as much work to the
JavaScript front end and the SQL back end as possible, leav-
ing relatively little work in the middle-tier server. We need
to examine whether automatic partitioning across the three
tiers is adequate, or whether finer control is required. We
also need to examine the relationship between partitioning
and security, since data sent to the front end may be sub-
ject to tampering. Security issues may be dealt with by au-
tomatic encryption or by giving finer user control over data
migration. [PhD 1.]

5



Concurrency and distribution. Can the concurrency and
distribution model of Erlang be adapted to Links? We need
to incorporate support for Erlang’s lightweight processes
into the Links interpreter and the JavaScript front end, in-
cluding devising a suitable type system, perhaps basing this
on ideas from JoCaml or Timber. The interaction model
with immutable DOM trees, mentioned above, should fit
well with concurrency. We need to consider whether concur-
rency should alter the JavaScript interaction model, which
currently depends heavily on callbacks. [PhD 2.]

Databases and transactions. Can database query and up-
date be integrated into Links? Our prototype, like Kleisli, is
a special purpose language without general recursive struc-
tures or modules. We need to add support for recursion and
modules. Kleisli achieved acceptable performance for bioin-
formatics applications, we need to evaluate performance on
server-intensive web applications. SQL queries are often
tuned to work with vendor-specific implementations; can we
tune the queries generated by Links, perhaps by providing
generation templates? Kleisli only generated queries. Our
prototype handles insertion and deletion of relational tuples,
we need to evaluate the adequacy of our design, and extend
it to handle transactions. [PhD 2.]

XML support. How should previous work on XML typ-
ing and manipulation be adapted to Links? The prototype
supports creation of XML data, but treats all XML data as
having a single type, “xml”, and has limited support for ma-
nipulation. We need to support regular-expression typing for
XML, one question being how to integrate this with Hindley-
Milner style type inference. (We may build on recent, unpub-
lished work by Frisch in this area.) And we need to add con-
structs for manipulating XML, one question being whether
to use XDuce-style pattern matching, XPath-style selection,
Hosoya’s recent work on XML filters, or some combination.
Our prototype only generates queries in SQL, and should be
extended to also generate XQuery. [RA.]

Web services and interlanguage working. How should
Links integrate with other systems? We need to support web
services, including import and export of XML Schema and
WSDL, and support for SOAP. Experience in the functional
programming community shows the importance of interlan-
guage working, and we plan to implement an interface with
Java or C]. The type system of Links will need to be adjusted
to integrate well with object-oriented languages, perhaps by
adapting ideas from O’Caml or Scala. [RA.]

DevelopmentThe RA will be in overall charge of the
structure of the compiler, while the PhD students will build
prototypes for new features. To enable three developers (or
more) to work flexibly and reliably in concert, we will adopt
techniques from the Extreme Programming and Agile Pro-
cesses community [3]. We will use pair programming to en-
sure all programmers are familiar with all code; unit test to
increase reliability, with writing of unit tests preceding rather
than following writing of code; and frequent refactoring to
keep the code easy to maintain. We will use storycards to
focus on what feature to implement next, and a daily fifteen
minutes stand-up meeting to facilitate communication. We

will make a major release of a new compiler once every six
months. We will review and adjust our use of agile methods
as the project continues. [RA and PhDs, throughout.]

Case studiesWe will need to implement case studies
to evaluate the language design. One candidate is the Java
Petshop (or TPC-W), which has been used to compare Java,
C], and other web frameworks. Another is to see if we
can emulate in Links the design of Topsl, a domain-specific
language for on-line surveys embedded in Scheme [30]. We
expect to solicit additional candidates for case studies from
our advisory board. [RA and PhDs, throughout.]

Library A organized, documented, and large library is one
factor contributing to the success of languages such as Perl,
PHP, and Python. The RA will maintain a library web site,
encouraging our user community to develop and share li-
braries. Analogous to the well-known CPAN (Comprehen-
sive Perl Archive Network), our library site will be called
CLAN (Comprehensive Links Archive Network), giving a
fortuitous Scottish slant. [RA, throughout.]

Write up, distribution and documentationTime is allo-
cated at the end for write up of the dissertations, and for
producing a final distribution with complete documentation.

Management Wadler will meet with each doctoral student
for one hour each week. The entire project team will meet
once each week, plus additional meetings as needed. All
team members will record their progress in blogs, a strategy
that has proved effective when trialed this year. At the end of
each year an interim progress report will be produced, with
each team member contributing a separate section. We will
also aim to have a yearly retreat, to enable deeper review and
to build team spirit.

Future plans The support sought here is minimal, in order
to establish that our approach is sound. Establishing Links as
a widely used language is an ambitious plan and will require
additional support. As the work progresses, we expect to ap-
ply for additional grants, within the UK and from the EU, to
test the design on larger applications (perhaps in e-Science),
to build a debugger and profiler, and to integrate with an in-
teractive development environment (such as Eclipse).

Relevance to Beneficiaries

Web applications are widely used in commerce, healthcare,
government, education, and science. A programming lan-
guage that allows one to develop web applications with in-
creased productivity and greater reliability could have an
enormous impact on all areas of society. Consumers, pa-
tients, citizens, students, and scientists will benefit from
more reliable and more flexible web applications. Compa-
nies, hospitals, ministries, schools, and universities will ben-
efit from increased productivity of web application develop-
ment.

As a particular example, we expect Links to benefit e-
Science and e-Research, which depend crucially on distribu-
tion and databases, two of the essential elements in Links.
We have already been approached by members of the e-
Science community interested in Links. With Amanda Clare

6



of the Computational Biology group at Aberystwyth and
Werner Dubitzky of the Bioinformatics Research Group at
Ulster, we prepared a small travel grant proposal, “Explor-
ing Links as a language for e-Science”, to facilitate commu-
nication between Links and the e-Science community. Note
that the Links team was approached by the e-Science practi-
tioners, not the reverse — they learned about Links from the
announcement of the Links workshop, and it sounded like a
match to their needs. We also expect Links to benefit from
the location in Edinburgh of the National e-Science Centre.

We also expect a less direct benefit from Links. Britain
has a long tradition of leading the world in developing
programming language theory and in putting it into prac-
tice, beginning with Turing and extending through Strachey,
Burstall, Milner, and Hoare. But as the software industry
has grown its inertia has increased, and the gap between the-
ory and practice has widened. Although Britain continues
to produce the best programming language theorists in the
world, that lead is no longer feeding through sufficiently to
innovation in practice. We hope Links will take the lead in
showing how to reduce this gap, and reopening the produc-
tive interchange between computing theory and industrial
practice.

Dissemination and Exploitation

We will make the Links software available to the community,
under an open-source license. Edinburgh Research and Inno-
vation maintains a web site and management system to sup-
port open-source distribution of software. CLAN, the Com-
prehensive Links Archive Network, as described above, will
act as a means for Links users to develop and share libraries.

The industrial advisory board and web community de-
scribed above will be important avenues both for under-
standing the needs of the developer community and for dis-
seminating the results to that community.

Developing Links as a consortium will further enhance
the dissemination of the results. We have already organized
one Links workshop, and expect to hold one Links workshop
per year.

We will present research at workshops and conferences
and publish in academic journals.

Justification of Resources

Manpower We request funding for one additional PhD
studentship, and one Research Assistant on AR1A at point 5
(£23,643). We also request 25% of a computing officer on
AD3 at point 3; 5% of a secretary on CN3 at point 3.

It is desirable to attract for the RA post someone with ex-
perience of web application development. This is a highly
saleable skill, requiring the RA post to be funded at a com-
petitive level.

The computing officer will be responsible for maintaining
the web server for testing Links applications, a Links website
acting as a source for documentation, code, and libraries
(via CLAN), and for ensuring the School of Informatics
computing environment supports implementations needed

to act as a basis for Links and for comparison with Links,
including Erlang, Haskell, O’Caml, PHP, and Apache.

The secretary will be responsible for coordinating meet-
ings with our industrial advisors; coordinating meetings with
academic partners in the UK, Europe, and worldwide; orga-
nizing workshops and meetings to promote Links; travel ar-
rangements for conferences and workshops; and document
preparation.

Travel We request support for a total of 12 visits of one–
three days within the UK (e.g., Cambridge, London, Oxford,
York) at £250 per trip; 10 visits of one week within Eu-
rope (e.g., Aarhus, Chalmers, Copenhagen, Freiburg, Lau-
sanne, Paris) at£850 per trip; 8 visits of one–two weeks to
the US (e.g., Harvard, Northeastern, Pennsylvania, Stanford,
Yale), Australasia (e.g., Sydney, Kyoto, Tokyo, Singapore)
at£1600 per trip; and 15 conference attendance fees of£350
each1.

Equipment The School of Informatics has an integrated
computing environment (DICE) that provides high reliabil-
ity and comprehensive facilities. Faculty and students are
supplied with DICE PCs by the school.

We request one desktop Linux PC running DICE for the
RA, and one high-end PC to act as a web server, for use in
testing the performance of Links.

Portable machines are necessary for presentations, demon-
strations, and working effectively during travel. Apples run-
ning OS X provide the best usability. We request two Apple
PowerBooks to be shared among the researchers.

We need to compare Links with competing software,
much of which is available only under Windows. We request
one Windows laptop to be shared among the researchers.

We require both laptops and desktops because we need to
be both portable (presentations, travel) and fixed (develop-
ment, server).

We request one large display screen for demonstrations;
this can be attached to both desktops and laptops as required.

Consumables To facilitate comparison with competing
systems, we request£1000 for commercial software of rel-
evant systems (such as Visual Studio) and£500 for books
describing such systems (which are not available from the
University library).

We request£1000 each for organization of three work-
shops. We expect to organize some workshops in Edinburgh
and some elsewhere, in order to emphasize that Links is a
collaborative project with participation from a number of
sites.

1 To attend conferences such as: AiML, AMAST, APLAS, ATVA, BCTCS,
CADE, CATS, CAV, CC, CFP, CLAPF, CLIMA, CMCIM, CMCS, CMSB,
Concur, Coordination, CoOrg, CSL, CTCS, DBPL, ECOOP, Erlang, ESS-
LLI, ESOP, ETAPS, FLOPS, FMCO, FME, FOAL, FOOL, Forte, FroCos,
FSE, FSTTCS, GCSE, Haskell, ICALP, ICCL, ICDCS, ICFEM, ICDCIT,
ICDT, ICFP, ICWE, ICWS, ICLP, ICTAC, ISDT, IWFM, LICS, MFCS,
MFPS, MPC, MTCOORD, OOPSLA, PADL, PEPM, Plan-X, PLDI, PLI,
PODS, POPL, PPDP, PROCOMET, RTA, SAS, Scheme, SPIN, TACAS,
TACS, TFP, TGC, TIC, TLCA, TLDI, TPHol, TYPES, VMCAI, VLDB,
WebDB, WFLP, WOLLIC, WSFM, WWV, WWW, XML.

7



References
[1] J. Armstrong, M. Williams, R. Virding.Concurrent Program-

ming in Erlang. Prentice-Hall, 1993.

[2] J. Armstrong. Concurrency oriented programming in Erlang.
Invited talk, FFG 2003.

[3] K. Beck.Extreme Programming Explained. Addison Wesley,
2000.

[4] C. Brabrand, A. Møller, M. Ricky, M. Schwartzbach.
PowerForms: Declarative client-side form field validation.
World Wide Web Journal3(4), 2000.

[5] C. Brabrand, A. Møller, M. Schwartzbach. The Bigwig
project.TOIT, 2(2), 2002.

[6] N. Benton, L. Cardelli, C. Fournet. Modern concurrency
abstractions for C]. TOPLAS, 26(5), 2004.

[7] N. Benton, A. Kennedy, and C. Russo. Adventures in
interoperability: the SML.NET experience.PPDP, 2004.

[8] V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-
centric general-purpose language.ICFP, 2003.

[9] G. Bierman, E. Meijer, W. Schulte. Programming with
rectangles, triangles, and circles.XML Conference, 2003.

[10] H. Böttger, A. Møller, M. Schwartzbach. Contracts for
cooperation between web service programmers and HTML
designers. Tech report, BRICS, 2003.

[11] P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Principles
of programming with complex objects and collection types.
TCS, 149(1), 1995.

[12] R. Burstall, D. MacQueen, and D. Sannella. Hope: An
experimental applicative language.Lisp Conference, 1980.

[13] A. Christensen, A. Møller, M. Schwartzbach. Extending Java
for high-level web service construction.TOPLAS, 25(6),
2003.

[14] A. Christensen, A. Møller, M. Schwartzbach. Precise analysis
of string expressions.SAS, 2003.

[15] S. El-Ansary, D. Grolaux, P. Van Roy, M. Rafea. Overcoming
the multiplicity of languages and technologies for web-based
development.Mozart/Oz Conference, LNCS 3389, 2005.

[16] M. Ferńandez, J. Siḿeon, P. Wadler. Introduction to the
XQuery Formal Semantics. Katz, ed,XQuery for Experts,
Addison-Wesley, 2004.

[17] C. Fournet, G. Gonthier. The Join Calculus: a language for
distributed mobile programming.Applied Semantics, LNCS
2395, 2002.

[18] C. Fournet, F. Le Fessant, L. Maranget, A. Schmitt. JoCaml: a
language for concurrent distributed and mobile programming.
Advanced Functional Programming, LNCS 2638, 2003.

[19] J. Garret. Ajax: a new approach to web applications. 2005.

[20] P. Graham. Beating the averages. 2001.

[21] P. Graunke, R. B. Findler, S. Krishnamurthi, M. Felleisen.
Automatically restructuring programs for the web.ASE, 2001.

[22] P. Graunke, R. B. Findler, S. Krishnamurthi, M. Felleisen.
Modeling web interactions.ESOP, 2003.

[23] P. Graunke, S. Krishnamurthi, S. van der Hoeven, M.
Felleisen. Programming the web with high-level program-
ming languages.ESOP, 2001.

[24] V. Gapeyev, M. Levin, B. Pierce, A. Schmitt. The Xtatic
experience.PLAN-X, 2005.

[25] T. Grust. Monad comprehensions, a versatile representation

for queries. In P. Gray,et al (editors),The Functional
Approach to Data Management, Springer Verlag, 2003.

[26] H. Hosoya, B. Pierce. XDuce: A typed XML processing
language.WebDB, LNCS 1997, 2000.

[27] Haruo Hosoya, Benjamin C. Pierce. XDuce: A typed XML
processing language.TOIT, 3(2), 2003.

[28] IMRG. Retail’s New Order. Press release, 2003.

[29] L. Libkin, L. Wong. Query languages for bags and aggregate
functions.JCSS, 55(2):241–272, 1997.

[30] M. MacHenry, J. Matthews. Topsl: a Domain-Specific
Language for On-Line Surveys.Scheme Workshop, 2004.

[31] S. Marlow, P. Wadler. A practical subtyping system for
Erlang.ICFP, 1997.

[32] A. Møller, M. Schwartzbach. The design space of type
checkers for XML transformation languages.ICDT, LNCS
3363, 2005.

[33] M. Neubauer and P. Thiemann. From sequential programs
to multi-tier applications by program transformation.POPL,
2005.

[34] M. Carlsson, J. Nordlander, D. Kieburtz. The semantic layers
of Timber.ASPLAS, 2003.

[35] M. Odersky, V. Cremet, C. Rockl, M. Zenger. A nominal
theory of objects with dependent types.ECOOP, 2003.

[36] M. Oderskyet al. An overview of the Scala programming
language. Technical report, EPFL Lausanne, 2004.

[37] F. Pottier, D. Ŕemy. The essence of ML type inference. In B.
Pierce, editor,Advanced Topics in Types and Programming
Languages, chapter 10, pages 389–489. MIT Press, 2005.

[38] C. Queinnec. Continuations to program web servers.ICFP,
2000.

[39] A. Sandholm, M. I. Schwartzbach. A type system for dynamic
web documents.POPL, 2000.

[40] Science for global ubiquitous computing. A fifteen-year
grand challenge for computing research. UKCRC, 2003.

[41] J. Simeon, P. Wadler. The essence of XML.POPL, 2003.

[42] D. Syme. F]web page.

[43] P. Thiemann. WASH/CGI: server-side web scripting with
sessions and typed, compositional forms.PADL, 2002.

[44] P. Van Roy,et al. Logic programming in the context
of multiparadigm programming: the Oz experience.TLP
3(6):717–763, November 2003.

[45] P. Wadler, W. Taha, and D. MacQueen. How to add laziness
to a strict language, without even being odd.Workshop on
Standard ML, 1998.

[46] P. Wadler and P. Thiemann. The marriage of effects and
monads.TOCL, 4(1), 2003.

[47] C. Wikstr̈om and H. Nilsson. Mnesia – an industrial DBMS
with transactions, distribution, and a logical query language.
CODAS, 1996.

[48] L. Wong. Kleisli, a functional query system.JFP, 10(1),
2000.

[49] XML Query and XSL Working Groups. XQuery 1.0: An
XML Query Language, W3C Working Draft, 2005.

8



Diagrammatic Workplan

Month 0

Month 6

Month 12

Month 18

Month 24

Month 30

Month 36

Month 42

Month 48

PhD 1

Interaction

Partitioning

and Security

Write up

PhD 2

Concurrency

and Distribution

Databases

and Transactions

Write up

RA

XML Support

Web Services and

Interlanguage Working

Final distribution

and documentation

9


