
University of Edinburgh
Division of Informatics

Creating linksCollab : An Assessment of Links
as a Web Development Language

4th Year Project Report
Computer Science and Management Science

Steve Strugnell – 0451494

March 10, 2008

Abstract: This report presents a critical assessment and evaluation of Links – a new
functional language for web programming, which integrates the three tiers traditionally
associated with web-based application development. A project management applica-
tion was created in Links, and used to provide a basis for investigating the features and
functionality of the language compared to PHP – a common web development lan-
guage. Links performs strongly when handling web forms due to its use of reusable,
composable, and validated form elements. It makes use of continuations for client-
side persistence of program state, allowing for easier collection of mid-process user
input, and fewer difficulties for multi-window browsing compared to PHP. However,
the tightly integrated database approach used in Links results in a significant loss of
the flexibility and power of database management systems, and there are found to be
numerous problems with the volume and efficiency of the generated SQL statements.

Contents

1 Introduction 1
1.1 Programming for the Web . 1
1.2 Web 2.0 and AJAX . 1
1.3 The Three Tiers . 2
1.4 Report Aims & Structure . 4

2 Application Development 5
2.1 Specification . 5
2.2 Implementation . 8

3 Overview of Languages 9
3.1 Language Syntax . 9
3.2 Functional vs Imperative . 9
3.3 Types and Variables . 11
3.4 Coding Differences . 12
3.5 Higher-Order Functions . 13
3.6 Repetition – Iteration and Recursion 14

4 Form Handling 17
4.1 Challenges in Form Handling . 17
4.2 Programming with Forms . 18
4.3 Comparison of Implementations . 23

5 State & Continuations 29
5.1 Problems with Multi-Windowed Sessions 29
5.2 Continuations . 30
5.3 Global State . 32
5.4 Mid-Process User Input . 32
5.5 Implementing a Secure Login . 33
5.6 Seamless Logins Using sendSuspend 34
5.7 Seamless Logins in PHP . 36
5.8 Further use of sendSuspend . 39
5.9 Summary . 41

6 Database Operations 43
6.1 Terminology . 43
6.2 Databases in PHP . 43
6.3 Databases in Links . 44
6.4 Advantages of Links . 45

iii

6.5 Limitations of Links . 48
6.6 Creating a Permissions System . 51
6.7 Creating a Dashboard Page . 54
6.8 Further Inefficient SQL Generation 58
6.9 Summary . 59

7 Further Issues & Observations 61

8 Conclusion & Further Work 63

Acronyms 65

Bibliography 66

Appendix A: Specification 71

Appendix B: Date Formlet 81

Appendix C: Form Processing in PHP 83

Appendix D: Generated SQL Statements 87

1. Introduction

1.1 Programming for the Web

In the last decade web sites have evolved from simple collections of static pages
through to the highly interactive, dynamic and information-rich sites found on the
Internet today. Web applications have become increasingly popular; whether for find-
ing the cheapest insurance, checking bank details, buying presents or editing a docu-
ment, they are used daily by millions of people throughout the world. Development
of web applications is big business: companies such as Google are promoting the
idea of making desktop standard software accessible on the web (Helft, 2007), and
large multinationals are turning to such online software in search of solutions (Hoover,
2007). Software as a Service (SaaS) – the idea of selling access to hosted web applica-
tions – has become a successful deployment model within a number of different fields
including project management (PM), customer relationship management (CRM) and
human resource management (HRM) (O’Brien, 2007). With this level of motivation,
the complexity and diversity of online applications is only going to increase.

However there are a number of difficulties involved in successfully building and main-
taining such complex applications. Problems with maintaining state, differing data
types and a myriad of languages make this a demanding and error-prone task. With
these applications becoming so vitally important, there is a need for easier methods
and technologies to be made available for developing such rich applications in a shorter
time and at a reduced cost.

1.2 Web 2.0 and AJAX

“Web 2.0” is a phrase coined by Dale Dougherty at a conference brainstorming session
(O’Reilly, 2005), and has since been adopted as the term for describing the evolution
of the Internet. Web 2.0 does not represent a new version of any kind of software or
solution, but instead represents the “2nd generation” of the web – the transition from
document delivery to application provision, from static data to dynamic collaborative
tools. Web 2.0 sites are far more dynamic and feature-rich than Web 1.0 sites, offering
increasingly advanced services and empowering user-generated content through mash-
ups (Floyd et al., 2007). For these new sites, the traditional methods of controlling
web-pages – through hyperlinks, forms and buttons – are somewhat limiting, bringing
about the evolution of AJAX.

Asynchronous Javascript and XML (AJAX) is not a technology in itself, but the col-

1

2 1. INTRODUCTION

lective name for a number of different technologies that are used together (Garret,
2005). AJAX utilises Javascript and the XmlHttpRequest (XHR) API to establish an
asynchronous HTTP link between the client and server, enabling the transfer of data
without interrupting the user’s activity and preventing the need for page reloads. This
benefits both developers and users by increasing the responsiveness, speed and func-
tionality of websites. The innovation of AJAX has allowed programmers to create real-
time user interfaces, similar to those encountered within desktop programs, spawning
the development of online services such as Google Maps and Gmail (Paulson, 2005).
AJAX is now a fundamental tool in building the feature-rich web applications expected
by today’s Internet users.

1.3 The Three Tiers

1.3.1 Introduction

Programming for the web typically revolves around the concept of three tiers – three
independent, interconnected systems which must communicate with each other to pro-
vide the required application functionality: the data store, the application server, and
the client.

Data Store (back-end)

The responsibility of the back-end is to store data necessary for the application. This
role is typically fulfilled by a Database Management System (DBMS) such as MySQL,
PostgreSQL, SQL Server or Oracle. The ability to access and update the data is typi-
cally provided through the use of query languages such as Structured Query Language
(SQL) or XQuery - an XML query language.

Server-side (middle-tier)

Also known as the application layer, this tier is responsible for the majority of business
logic, data processing and output generation. It is also responsible for accepting and
interpreting user input, for example form submissions on websites. When a particu-
lar page or process is requested by a client, the web server invokes server-side code
to generate the response page, which is subsequently returned to the client. During
this process the middle-tier may utilise the back end data store to persist or retrieve
any necessary data. The code residing within this tier will commonly execute on the
web server itself, handling tasks such as input validation and processing, database
query generation and interfacing with other systems or hardware. Typical server-side

1.3. THE THREE TIERS 3

languages commonly in use today include PHP, Java and Microsoft’s ASP.NET frame-
work.

Client-side (front-end)

In the vast majority of cases the front-end takes the form of a web browser. In this
context the client handles user requests, for example a user typing in a URL, clicking
a link or submitting a web form, and transmits these to the web server. The client
then renders the HTML response received. Client web browser software typically
supports Javascript as a language for transforming elements of the page, and this is a
key language in supporting the use of AJAX within web pages for dynamic updates.

1.3.2 Problems With the Three Tiers

The difficulty with such a model is that the three tiers are based on three indepen-
dent languages which have different types and syntaxes. The most significant barrier
between successful interconnection of these languages is known as the impedance mis-
match problem, which describes the difficulty in relating the types of one language to
that of another. How do you relate the inputs on web forms such as dates and times to
the data types present in the server-side language? How do these then correlate with
those utilised by the database? These irregularities make it difficult to seamlessly and
efficiently transfer data across the tier boundaries between these different languages,
with programmers often performing complex transformations and validations in order
to complete this task.

Another more obvious problem is that of the languages themselves – developers re-
quire knowledge of at least three different languages to be able to create even the most
basic web application that uses AJAX and a database. This creates a steep learning
curve for new programmers entering the domain of web applications, and even those
with previous coding experience may not be familiar with the complexities of database
systems, or the intricacies of creating valid, cross-browser Javascript code.

1.3.3 The Solution – Links

Links is a programming language for web applications that aims to overcome these
common problems by providing a single language with which to program for all three
tiers (Cooper et al., 2006). Application programmers write their code in the Links
language, which is then compiled to the necessary Javascript for the client-side browser
and SQL to interact with the database system.

4 1. INTRODUCTION

Links differs from most application frameworks in that it offers a fully enclosed so-
lution, not requiring web developers to learn any additional languages. Many frame-
works that aim to assist client-side development generally only facilitate Document
Object Model (DOM) manipulation and generating XHRs, still requiring substantial
amounts of Javascript code to be used to control events modify the page (Ext JS,
MooTools). With Links, the programmer has the ability to exert control over client-
side components in the web page using the same language in which the rest of the
application is written. There is also no requirement for the developer to write any SQL
queries to interact with the database.

The benefits of such an approach are that it dramatically reduces the difficulties in pass-
ing data between client and server – a very common task when developing a dynamic
web application. This speeds up development as the developer is no longer concerned
about the difference between Javascript and PHP Hypertext Preprocessor (PHP) data
types, or about how best to package and transport, for example the latest search results,
from server to client. It allows a programmer to transform and dynamically update the
display of data in the client browser with ease, maintaining type safety throughout.

1.4 Report Aims & Structure

This report presents an assessment and evaluation of Links as a language for devel-
oping web applications, drawing on comparisons with an existing, familiar solution:
PHP. The aim is to assess how the implementation of particular features and functional-
ity of web applications differs between the two languages. It examines the advantages
and disadvantages of each method, focussing not only on the merits of the implemen-
tation, but also on the general differences between the languages such as coding style,
readability, maintainability, and the relative ease or complexity of programming.

In order to perform an assessment of Links I developed an application using the lan-
guage. Chapter 2 outlines this application development stage, describing the deci-
sions behind the inclusion of specific features and the final implementation. Chapter 3
gives a basic overview of the main differences between the two languages under study.
Chapters 4 to 6 focus on particular aspects of web programming, describing the relative
merits of each language in their approach to solving the problems. Chapter 7 covers
observations and issues that were not suited to any of the previous chapters. The con-
clusion offers an evaluation of Links as a language for web development, highlighting
areas in which this study could benefit from further research or analysis.

2. Application Development

To obtain the necessary exposure to the Links language I developed a web-based
project management application, from this point forward referred to as linksCollab.
The purpose of building this application was to gain familiarisation with both func-
tional languages in general, and also the specific techniques used in development us-
ing Links. Completion of the application provided a solid foundation for assessing the
Links language, allowing specific code examples to be used to illustrate points effec-
tively. This chapter outlines the process by which the features of the application were
specified, and briefly describes the outcome of the implementation.

2.1 Specification

With the project focussing on comparison and evaluation rather than design and devel-
opment, using an existing application to gather features allowed a substantial amount
of time to be saved. There are numerous online project management applications avail-
able; PHProjekt, dotProject, Achievo and Basecamp were all examined for their fea-
tures whilst searching for a suitable application to recreate. The software eventually
chosen for this purpose was activeCollab – a web-based project management applica-
tion developed by A51 using PHP with a MySQL database system. This is a sizeable
commercial application and implementing all of its functionality would have been be-
yond the scope of this project, therefore only a subset of the features were selected for
inclusion. This application was chosen as it has a clean and modern interface, is devel-
oped using PHP, and has a well-defined and distinct set of features, making it simple to
exclude those that are not necessary for linksCollab.

The features were selected to fulfil a number of criteria, with the aim of creating an
effective platform for the comparison and evaluation of Links to be completed. These
criteria include: a) allowing for a sufficient variety of coding styles and techniques,
b) generating a reasonable volume of code, c) avoiding duplication of tasks or meth-
ods, and d) exploiting areas in which Links vastly differs from traditional languages,
such as form processing and database operations. Meeting these criteria ensured that
sufficient exposure to the language was gained during the development process. This
allowed for an understanding of the different ways in which certain functionality can
be implemented, as well as the discovery of any particularly interesting characteristics,
both positive and negative, that can contribute to the discussion.

The following sections describe the features themselves and the reasoning behind their
inclusion or exclusion. The full specification for the application can be found in Ap-
pendix A.

5

6 2. APPLICATION DEVELOPMENT

2.1.1 Features Included

The following list describes each of the features selected for inclusion:

• Multiple projects - The application supports multiple projects, with indepen-
dent milestones, tasklists and discussions. Users should be able to actively work
on multiple projects and switch between them easily.

• Milestones - Milestones define actions that must be accomplished, usually by a
certain date, in order to proceed with or complete a project. Users should have
the ability to create, edit and delete milestones.

• Checklists - A list of related tasks that can be checked off as they are completed.
These are renamed to Tasklists to better reflect their purpose. The user should
have the ability to view, create, edit and delete tasklists.

• Tasks - Actions that must be completed to progress with a project. They are
generally smaller and quicker to complete than project milestones. The applica-
tion should enable users to create, edit and delete tasks belonging to a particular
tasklist.

• Discussions - Discussions can be likened to a simple forum whereby users can
create new discussions and others can submit replies. Users should be able to
create, open, close and reply to discussions, as well as edit their own posts.

• Starred items - Any of the above items such as milestones or tasklists can be
starred by a user, and these items will then become visible on the users dash-
board.

In addition to the features listed above, there are a number of administrative functions
that are included such as the management of users, permissions and projects. The
application also makes use of a secure login system, the implementation of which is
discussed in Chapter 5.

These features are sufficient to build a functional application, yet feasible to complete
within the project timescale. They offer a number of opportunities to input and display
data in different formats to enable different aspects of the language to be utilised, whilst
also sharing certain characteristics to allow exploitation of the powerful re-usable form
components in Links. The use of these components is examined in (Chapter 4). Devel-
opment of these features will also necessitate heavy use of the database, particularly
for the dashboard pages where data must be collected and joined across several differ-
ent tables. This provides grounding for an assessment of Links database capabilities
in Chapter 6, and provides adequate scope for comparison with PHP in this respect.

Further development beyond these features will focus on the development of AJAX
functionality - converting existing functions such that they no longer require a page

2.1. SPECIFICATION 7

refresh. Good examples are actions such as deleting a milestone or marking a task as
completed.

2.1.2 Features Excluded

The following sections provide the descriptions and explanations of features that were
excluded from the specification for the development.

Pages

Pages are designed for content production workflow, allowing collaborative work on
documents with unlimited versioned and re-orderable pages and sub-pages. Each of
these pages can have attached tasklists detailing the work required for completion of
the page.

The reason for exclusion of this feature is due to time constraints and workload. Im-
plementing this feature would require vast effort, as a system similar to Google Docs
would have to be developed in order to allow collaborative editing and versioning.
Such a large volume of work would be suitable as a standalone project, but not as part
of a wider application.

Building this feature would allow for the use of Links client-side code to re-order
pages, however such functionality could easily be implemented for the milestone or
task lists if desired.

Tickets

Tickets are generally used for handling customer queries and support issues. They
include a summary, description and due date, can be categorised and tagged, and have
their own tasklists. Tickets also have a time-tracking feature and can be assigned to
milestones to allow for multiple tickets to contribute to the completion of a milestone.

The majority of the functionality of tickets is already duplicated within the features
identified for inclusion. A similar concept can be reproduced through the use of
tasklists, as these already include a summary, description and list of tasks. They can
also be assigned to milestones in the same manner, making this a slightly redundant
feature for projects within which customer support is not a primary concern, and time-
tracking is not required. The time-tracking also consists of simple add, edit and delete
to a list in a similar manner to tasks, hence would involve little additional language
experimentation.

8 2. APPLICATION DEVELOPMENT

The extra effort involved in re-creating tickets does not return sufficient benefit to be
warranted. The reproduction of functionality present in other areas, albeit with a few
added extras, would add little value to the comparison or evaluation, rendering the
additional work worthless in this respect.

2.2 Implementation

The application was written entirely in Links code, using no additional Javascript or
SQL to provide functionality that was not available in the Links language. It uses only
server-side functions, and user interaction is through hyperlinks and form submissions.
Supplementary client-side AJAX functionality was not included, as sufficient material
for discussion was found during the development of the core features.

The fully functional application can be found at:

http://linkscollab.stevestrugnell.net
Username: demouser Password: demopass

Full source code is viewable at:

http://linkscollab.stevestrugnell.net/source

3. Overview of Languages

It is important to understand the fundamental differences between the two languages
under study – Links and PHP. The primary distinction between them is the employment
of two different programming paradigms: functional, and imperative object-oriented.
This chapter outlines the differences between the two languages, as well as the specific
ways in which each language approaches particular aspects of programming such as
types, variables, lists and loops.

3.1 Language Syntax

Code examples are used throughout the remainder of the document to illustrate the
many differences between the two languages. Table 3.1 outlines their basic syntax.

Table 3.1: Language Syntax

Links PHP
Comments ## single line commment \\ single line comment

Type Declaration
sig myFunction : (Type) -> Type N/A
sig myVariable : (Type)

Function Definition
fun myFunction (arg) function myFunction ($arg)
...function body... ...function body...
} }

Variable Declaration N/A var $x;
Variable Assignment var x = 5; $x = 5;
Language Delimiters N/A (XML is built-in type) <? PHP code here ?> HTML here

3.2 Functional vs Imperative

Links and PHP employ two very different programming methodologies. This section
explains the primary differences between the two, and describes how these impact
developers using either language.

9

10 3. OVERVIEW OF LANGUAGES

3.2.1 PHP - Imperative Object Oriented

PHP Hypertext Preprocessor (PHP) is an imperative, object-oriented scripting lan-
guage. Computation in imperative languages is through execution of a series of state-
ments that affect an overall program state. As it is a scripting language, upon each
request by a client the PHP files are processed from the top down, with each command
being executed in a sequential manner. Since version 5, PHP allows for the full range
of Object Oriented Programming (OOP) functionality including interfaces, abstract
classes, inheritance and introspection. Objects are at the core of PHP, with complex
application development generally focussing on the creation, manipulation and persis-
tence of class instances. These classes contain functions that manipulate their state,
and the functionality for each object is encapsulated entirely within the object itself,
allowing for reusability.

An example of the Object Oriented (OO) paradigm is the creation of a class Square.
It has properties such as size and position that are manipulated through methods
contained within the object. A square is created by instantiating the class using new
Square(position,size). Moving the square to a new position is achieved through
calling the move(x,y) method on the Square instance, which updates the internal
representation of the square’s coordinates based on the arguments given. See Code
Listing 3.1 for example code demonstrating this paradigm. Note that there is the con-
stant notion of the same square existing as an object, and being moved and resized.

Code Listing 3.1. PHP code to create and move a square

$position = new Position(10,10);
$square = new Square($position,20);
$square−>move(5,5);

3.2.2 Links - Functional

Links is a functional programming language. It is based on mathematical concepts,
with all computation performed by applying functions to values. Functions are treated
as first-class values and can therefore be used as input within further expressions. In a
functional language every expression can be evaluated to a value – the computation is
the evaluation of a series of nested function calls, with each function acting upon the
result of its arguments. Functional languages do not maintain state in the same way
as imperative languages – there is no concept of objects or an overall program being
modified. As a consequence data is non-mutable – once a value has been assigned to
a variable, there is no command in a functional language to re-assign the variable to
another value. The way around this limitation is to make a revised copy of the value
and use this in future computation.

3.3. TYPES AND VARIABLES 11

Using the functional paradigm and taking the square example from above, this is im-
plemented very differently. A square is represented by four coordinates in the form
of a list or tuple. Functions such as createSquare(size,position) are used to
create an initial representation. Moving a square requires the use of an additional
moveSquare(square,offset) function. This takes a square and some offset values
as arguments, returning a new square representation, with the coordinate values based
on the offset and those of the previous square. There is no concept of a single in-
stance of a square that is updated – instead a new square is created and returned for
every modification. Example code for the functional paradigm can be found in Code
Listing 3.2.

Code Listing 3.2. Links code to create and move a square

var square = createSquare(10,10,20);
var movedSquare = moveSquare(square,5,5);

3.3 Types and Variables

3.3.1 Links – Strong Typing

Links is a strongly typed language. This means that the type and signature of each
value and function are known at compile time, making it impossible to pass arguments
of the wrong type. It also supports type inference – the type of each value or function, if
not specified through annotation, is inferred based on its context within the application
code. For example, if a value 5 is assigned to the variable t (using var t = 5), the
compiler infers that this is an integer. Similarly, var s = "links" would attach the
type String to the variable s.

3.3.2 PHP – Weak Typing

PHP on the other hand is weakly typed. The type of each variable is stored alongside
the variable in memory when it is assigned, and as such there is no type checking at
compile-time. Unusual operations such as the addition of a string to an integer do not
result in run-time errors – instead the expression is interpreted according to a set of
rules, and a result is returned. The statement "5" + 35 results in a value of 40 – the
language attempts to predict the operation the developer requires; however this may
not always be the outcome that is expected.

12 3. OVERVIEW OF LANGUAGES

3.4 Coding Differences

The different language paradigms have implications on coding practice for developers.
This section briefly outlines a sample of the differences observed during the develop-
ment of linksCollab.

3.4.1 Explicit Typing & Casting

In PHP it is perfectly valid to concatenate a string with an integer, for example when
outputting text. The compiler makes the assumption that the integer should be rep-
resented as a string and performs the operation. The following code is valid in PHP:

$string = "a string " . $myInt . "more string"}

In Links, the equivalent code fails with an error, as the concatenation operator does
not support integer types. The integer must be explicitly cast to a string using the
intToString function to used in this context, as shown below:

var str = "a string " ++ intToString(myInt) ++ "more string"

3.4.2 Modifying a List

It is very common in programming to make the same changes to a sequence of values.
In Links altering the values of a list is a very simple process: a list comprehension is
used to iterate through the list, returning a new list with each value adjusted as neces-
sary. However, it is important to note that the original list is never actually modified in
this case.

var list = [1,2,3,4,5];
var newlist = for (var item <− list)

[item+5];

Modifying lists in an imperative language such as PHP typically involves manually
looping through each value of the list, using a for construct, modifying the items as
necessary:

$list = array(1,2,3,4,5);
for ($i = 0; $i < size($list); $i++) {

$list[$i] = list[$i] + 5;
}

3.5. HIGHER-ORDER FUNCTIONS 13

The functional code in this example has the benefit of avoiding “off-by-one” errors
– making the mistake of starting at index 1 instead of 0 when iterating, or setting
the bounds too high or too low, resulting in either missing an element of the array, or
causing an “Array index out of bounds” error. However, starting at a particular element
when traversing lists, or performing a fixed number of iterations is more complicated,
usually requiring the entire operation to be wrapped in a recursive function.

3.5 Higher-Order Functions

Links has a concept of higher-order functions, defined as those that take one or more
functions as input, or output a function. In a functional language, all expressions
and functions are first class, allowing them to be passed to, and returned from, other
functions just like any other values.

A common example of a higher-order function is map, which takes a list and a function
as arguments, applies the function to each list element in turn and returns the new list
of results. The code to represent this in Links is shown in Code Listing 3.3.

Code Listing 3.3. Links code demonstrating higher-order map function

sig map : ((a −> b),[a]) −> b
fun map (func, list) {

for (item <− list) {
[func(item)]

}
}
var singles = [1,2,3,4,5];
var doubled = map (fun (y) { y*2 }, singles);

A major benefit of this functionality is for abstraction, for example in a sorting or
filtering algorithm, allowing for differently typed lists to be processed using a common
method. As PHP does not treat functions as first-class values, it is not possible to
reproduce the equivalent code in PHP. In strictly typed OOP or imperative languages,
it would be necessary to create different methods for each operation you wanted to
carry out on a class. The above example would require a doubleList method that
doubles all the values in a given list of integers or floats. But what if we instead want
to add 5 to each value? Or take the square root? Using the functional language this is
merely a case of substituting the function passed to map – the traversal through the list
is abstracted away from the operation being applied.

Some of the shortcomings of the imperative language can be overcome using the visitor
pattern. This avoids changing all the classes and writing dedicated methods for each
new programming task; instead only a single accept method is inserted into each
class. This method passes control back to the visitor, which acts as a repository for

14 3. OVERVIEW OF LANGUAGES

all the required methods (Palsberg & Jay, 1998). However this approach involves
significantly more code than the functional alternative, and can still be cumbersome
to maintain, especially if visitor methods require additional arguments or new return
types.

3.6 Repetition – Iteration and Recursion

Repetition in imperative programming is handled very differently from that in func-
tional languages. This is due to the fact that a functional language has no concept of
the state of a variable – it is not possible to change the value assigned to a particu-
lar name. For this reason, looping several times and repeatedly evaluating the same
expression has no further effect than evaluating it once. To propagate changes to vari-
ables in Links, it is necessary to pass the values to the next iteration of the code. This
leads to the notion of recursive functions – functions that call themselves, but with
the arguments modified. Code Listing 3.4 gives an example of a recursive function
in Links to return an input string repeated a certain number of times. Each iteration,
the function returns the string concatenated with the result of repeating the operation a
further acc-1 times. The recursion eventually terminates when acc reaches zero.

Code Listing 3.4. Links code for repeating a string a number of times

acc is the accumulator, required to keep track
of how many iterations remain
fun makeString (str, reps, acc) {

switch (acc) {
case 0 −> []
case current −> str ++ makeString(str,reps,acc−1)

}
}

Imperative languages use for and while constructs to perform iteration. The same
commands are repeated continuously, updating the state of one or more variables until
an exit condition is reached. Code Listing 3.5 gives the PHP code for performing the
same string repetition; the $newstr variable is initialised, modified $reps number of
times, and then returned.

Code Listing 3.5. PHP code for repeating a string a number of times

function makeString ($str, $reps) {
$newstr = "";
for ($i = 0; $i < $reps, $i++) {

$newstr = $newstr . $string;
}
return $newstr;

}

3.6. REPETITION – ITERATION AND RECURSION 15

Michaelson (1989) offers a succinct analogy for the difference between the iterative
and functional approaches:

“eating apples iteratively involves gobbling 1 apple N times, whereas eat-
ing apples recursively involves gobbling 1 apple and then eating the re-
maining N-1 apples recursively”

16 3. OVERVIEW OF LANGUAGES

4. Form Handling

Forms are a fundamental component of any modern web application, as they are the
sole method for accepting textual input from users. Every web application makes use
of a least one form element, whether a text field to enter a username, a dropdown list
for country selection, or a button to submit a form. Multiple elements are often com-
bined to give the notion of an actual form that can be likened to its paper counterpart.
Users complete and submit forms to provide the data to perform a particular action,
for example adding a milestone to a project.

4.1 Challenges in Form Handling

Forms are a Hypertext Markup Language (HTML) construct and therefore, at least in
traditional web programming, a solely client-side concept. When forms are submit-
ted, the browser transmits an HTTP POST request to the web server, containing the
submitted data as a series of name/value pairs. Server languages typically have no
notion of a form or its elements, and merely provide a means of accessing this list of
name/value pairs sent by the client. There are a number of challenges that must be
overcome by the server-side language to enable the delivery and subsequent process-
ing of coherent, functional and accessible forms to website visitors, whilst maintaining
the security of both the server and the application. This section gives an overview of
these challenges, and the following sections describe how these are overcome in Links
and PHP, outlining the advantages and disadvantages of each approach.

4.1.1 Validation

One of the most common processes when handling forms on the server is validation.
It is important to ensure that the user has entered data where it is required, and that
this data meets the criteria expected by the application. Validation scales from simply
ensuring a particular field has been completed, through checking for correct formats
(e.g., email addresses), to validating complex business-specific dependencies.

In addition to these validation requirements, there is also the issue of security. Forms
offer users a method for inputting data into a web application, hence they are a high-
focus target for malicious users. Insufficient validation and sanitisation of form input
can leave a site open to Cross-site Scripting (XSS) attacks, SQL injection and other
vulnerabilities.

17

18 4. FORM HANDLING

4.1.2 Re-displaying Forms

Not only must this data be validated, the user must be notified of incorrectly submitted
information data in order to correct it as necessary. This nearly always involves the
use of field-specific error messages and, in some cases, visual prompts to highlight the
position of the error on the page. The more guidance that can be given to the user to
locate and correct the error, the greater the accessibility and usability of the form.

Following a failed validation it is also important that any data the user has already
entered remains on the form. This presents new challenges for programmers, as the
various HTML form elements have different ways of setting their default display value.
For some it is through HTML attributes; text inputs use the value attribute, radio but-
tons use checked. For others, such as textareas, the default value is inserted between
the start and end HTML tags of the element. Data must also be sanitised before being
displayed on the page to render any potentially dangerous HTML or Javascript code
inoperable. This is achieved by converting any non-alphanumeric characters to their
equivalent HTML encoding.

4.1.3 Using data on the server

Once the user input has been collected, validated and sanitised, it must then be passed
to the methods and functions that carry out the required behaviour. However, upon
reaching the server the data has lost its associated meaning: a text field prompting for
a date is now merely a string. Recall the definition of the impedance mismatch problem
given on page 3; the representation of a date on the client-side is now delivered to the
server as a string, hence must be converted to a date type before being used in further
processing. This correlation between input fields and their data types must be rebuilt
on the server in order to allow user input to be used effectively.

4.2 Programming with Forms

4.2.1 Links Formlets

Formlets are the Links solution to these challenges. They are strongly typed, re-usable
form fragments that can either be used standalone, or combined together to form larger,
more complex forms. Each formlet can be assigned a validation function to check user
input, with custom error messages displayed upon failure. The resultant values from
formlets are available for use elsewhere within the application as the appropriate data
types – no further conversion is necessary.

4.2. PROGRAMMING WITH FORMS 19

The best method of illustrating the advantages and flexibility of formlets is with an
example. Figure 4.1 shows the form in linksCollab for adding a milestone to a project.
The form has four inputs for the user: a text field for the summary, two date fields,
a drop-down box for the priority, and a submit button. These components and their
associated validation requirements are shown in Table 4.1.

Table 4.1: Milestone form components

Component Type Validation
Summary Text Input Not Empty
Start Date 3 Text Input All Not Empty

All Integer
Valid Date

End Date 3 Text Input All Not Empty
All Integer
Valid Date

Priority Option Input Integer
>= 0
<= 4

It is evident from Table 4.1 that there is a significant amount of validation to be carried
out for only a small form. In addition to the individual field validation, there is further

Figure 4.1: Form for adding a new milestone

Home Projects Profile Admin Logout

Dashboard Milestones Tasklists Discussions

Active Milestones Completed Milestones Add Milestone

Summary:

Start Date: / /

End Date: / /

Priority: NormalNormal

Add Milestone

Copyright Steve Strugnell 2007-2008Dashboard Milestones Tasklists Discussions

Milestones

Add Milestone

20 4. FORM HANDLING

application level validation that may need to be applied; in this case it should not be
possible for the user to enter an end date that is earlier than the start date.

Using Links, each of these validation requirements is taken in turn, and a formlet cre-
ated to represent it. These are then combined to generate the entire form, with all
necessary validation in place. The summary field is created by extending the Links
base input formlet, adding a validation requirement that it is not empty (Code List-
ing 4.1). Creating the date inputs is a bit more complicated. First, validation is added

Code Listing 4.1. Links code for adding validation to input field

sig isNotEmpty : (String) −> Bool
fun isNotEmpty (str) {

length(str) > 0
}
sig inputNotEmpty : () −> Formlet(String)
fun inputNotEmpty () {

input `satisfies` (isNotEmpty `errormsg` fun () { "Must not be empty" })
}

to the input formlet to verify that its value is an integer. A new formlet is then cre-
ated that takes three such integer inputs for the day, month and year, returning a tuple
of type Date. This formlet is then extended further to add validation to ensure that
the input is indeed a valid date. The result is a formlet that can be used anywhere in
the application to obtain a date input from the user, always returning a strongly typed
Date. The code for this formlet can be found in Appendix B.

Figure 4.2 gives a visual representation of how the milestone form in linksCollab is
composed of individual formlet components. Once all the components have been cre-
ated, they are assembled into the main formlet for the page – in this case the Milestone
formlet. The child formlets are embedded within the appropriate eXtensible Hypertext
Markup Language (XHTML) markup to create the final code that will be rendered on
the client browser. Displaying the formlet on a page simply requires using the “=>”
operator to bind it to a handler function – a function that is called upon successful
submission, receiving the formlet data as its argument and continuing the application
process. Links automatically handles the generation of the surrounding form HTML
tags and creates all the necessary code for displaying the form elements. When the
form is submitted, all the input fields are validated according to the formlet rules and,
if successful, the application continues by executing the handler function. Code List-
ing 4.2 gives example code for rendering a Milestone formlet.

4.2.2 PHP Form Handling

Form handling in PHP is a very different process. Responsibility for XHTML genera-
tion, input validation and form re-display lies solely with the programmer. In general,

4.2. PROGRAMMING WITH FORMS 21

Figure 4.2: Breakdown of milestone form into Formlet components

Input FormletInput Formlet

Milestone Form

Start Date End Date PrioritySummary

Choice FormletInput Formlet

Input Formlet

NotEmptyInput
Formlet

IntegerChoice
FormletDateFormlet

IntegerInput
Formlet

a single PHP script that handles a form will follow a set process consisting of a series
of checks – failure at any point during the process leads to the form being re-displayed
(Figure 4.3). The following sections describe how each of these processes is imple-
mented in PHP, the source code for which can be found in Appendix C.

Validation

Validation is carried out once the script has determined that the form has been sub-
mitted, normally by checking whether there is an entry in the array of name/value
pairs (in PHP this is the $ POST array) corresponding to the name attribute of the form
submit button. If the request for this script is indeed the result of a form submission,
the submitted values are validated using regular expressions or PHP functions such as
is numeric. If validation fails, an appropriate error message is recorded, along with
the field that failed the validation, enabling this information to be displayed to the user.

22 4. FORM HANDLING

Code Listing 4.2. Links code to render the Milestone formlet in a page

sig pageAddMilestone : () −> Page
fun pageAddMilestone () {

page
<#>{ milestoneFormlet() => addMilestone }</#>

}
handler function addMilestone
fun addMilestone (milestoneData) {

add milestone to database
insert (tb milestone) values [(summary=milestoneData.summary, priority=milestoneData.priority ...)] ;
re−display milestones page
pageMilestones()

}

Figure 4.3: Flowchart of PHP form processing implemented by programmer

Has form been
submitted?

Show Form

Is data valid?

Convert to
required type or
representation

Generate
Error

Messages

Sanitise
Data

Form
Input

Get DataYes

No No

Yes

Wait for Submit

Start

Continue
Application

Re-displaying Forms

In order to re-display the submitted data and any appropriate error messages, PHP
code must be embedded within the HTML responsible for rendering the form. This is
necessary for dynamically inserting strings based on certain conditions – for example
if an input field has an entry in the $errors associative array, the error message is
displayed alongside the field.

4.3. COMPARISON OF IMPLEMENTATIONS 23

Using Data

If the validation process is successful, the data can then be used further in the appli-
cation. In a large scale web program this involves constructing or modifying objects,
passing the data to other functions, or storing it on disk. This would generally involve
converting the string values received from the form submission to appropriate data
types such as dates and integers.

4.3 Comparison of Implementations

There are a number of significant differences between the two implementation methods
detailed above. This section contrasts these two approaches, commenting on issues
such as ease of programming, flexibility, readability and maintainability.

4.3.1 Reusing Forms

The composability of the formlets in Links is very beneficial for code re-use, as once
a formlet has been defined it is available for use elsewhere throughout the application.
The developer can always be sure that necessary validation and error reporting will take
place automatically every time this formlet is displayed, without any need to invoke
it manually. In PHP, every page that implements forms must follow the flowchart
procedure outlined above in Figure 4.3, ensuring that all necessary validation takes
place. Reusing forms in PHP requires either storing them in separate files and using
include functions, or reproducing the HTML code on a per-page basis. With either
method, the programmer must still ensure the validation routines are called and be able
to return errors and user data to the form for re-display, resulting in unavoidable code
duplication.

4.3.2 Separation of Code

Links has a structured approach to form processing with the built-in Formlet type,
separating the form validation and error handling from the display of the form itself.
PHP follows a far more disorganised style, with output code contained within the form
itself and validation procedures located elsewhere in the file. This can make it difficult
to follow the flow of the application, potentially hindering maintenance or debugging
efforts.

The abstraction of form elements by Links also makes code maintainability signifi-
cantly easier than in PHP. Once a formlet such as the one for a Date demonstrated

24 4. FORM HANDLING

above has been created, the actual structure and rendering of the formlet is separated
from how it is handled in the code for application processes. Functions within the pro-
gram only expect a variable of type Date, and the method by which that is generated
is contained entirely within the formlet construct. Situations may occur during devel-
opment where input requirements will change – instead of using three text boxes to
represent the date, it might instead be displayed using a single text box with a client-
side calendar widget. In Links this has little impact – a single change in the formlet
code will ensure that this change is populated throughout the application, and that all
such date inputs on all forms continue to behave in the same manner. A similar change
in a PHP application is likely to involve re-writing sections of several different forms,
ensuring multiple validation procedures work for the new input type, as well as modi-
fying the method by which the inputted string is subsequently converted to a date type
for use elsewhere.

Links code for form handling is contained in a single location – the rendering, valida-
tion and error messages are all contained within the formlet construct. This approach
has the advantage of both removing such code from interfering with page layouts, and
making it simple for a programmer to know where to find a particular validation proce-
dure, or the code for rendering a particular input type. PHP form processing involves
embedding a substantial amount of code within the actual form itself, making it com-
plicated to read and comprehend. With this style of coding it becomes easy to make
syntactic mistakes in the XHTML output, resulting in non-standards compliant pages
and potentially inaccurate display on client browsers.

4.3.3 Security

Cross-site Scripting (XSS) attacks involve a malicious client exploiting occasions where
user submitted data is output to the page without sufficient sanitisation. This is used
to inject code into the page, usually Javascript snippets to read the domain cookies
or exploit browser vulnerabilities. Links helps prevent XSS attacks by ensuring that
data is escaped before being output to the page. All data types must be converted to
XML using the relevant typeToXml function before they can be displayed on the page,
ensuring the conversion of potentially dangerous scripts to harmless HTML encoded
characters.

4.3.4 Validation & Extensibility

The Links form handling methodology allows for creating strongly validated input
fields with short statements, aiding readability. Assuming functions are sensibly named,
the code for validation of a formlet reads in plain English – for example take the Links

4.3. COMPARISON OF IMPLEMENTATIONS 25

code in Code Listing 4.3; it can be intelligibly read as “input satisfies ‘is integer’, else
error message ‘not integer’”.

Code Listing 4.3. Links code for input field validation

{input `satisfies` (isInteger `errorMsg` fun () { "not integer" })}

Code Listing 4.4. PHP code for input field validation

if (!is numeric($ POST['field'])) { $errors['field'] = "not integer" }

The equivalent PHP validation code in Code Listing 4.4 is far less intuitive. Although
still readable, it requires closer examination by the reader to interpret the function-
ality correctly. This effect is amplified with more complex validation procedures, as
the number of if statements, validation checks and error messages increases. Links
can draw on the stacking ability of formlets to provide multiple levels of validation
with appropriate error messages at each level, whilst still maintaining a simple, easily
understandable code structure.

The PHP validation code in Code Listing 4.4 is also not exhaustive; it does not handle
the abortion of the submission after a failed validation, nor the display of the error
message. The single line of Links code manages these requirements in addition to
the validation itself, resulting in a lesser volume of code for the same functionality.
Developers also benefit from the strong typing of the inputted values offered by Links,
reducing the amount of type casting or additional conversion required within a PHP
application. This eliminates the possibility of performing operations such as dividing
a string by an integer, which in PHP may give an erroneous result and be difficult to
track down in the code, hindering debugging or maintenance efforts.

Parameterising Validation

Being a functional language, Links has the further advantage in that the validation
function can be parameterised, allowing for different validation constraints whilst still
maintaining the readability. Instead of using a simple isInteger function, a higher-
order function isGreaterThan could be implemented that returns the validation func-
tion. This would allow for validation lines such as that shown in Code Listing 4.5.

Code Listing 4.5. Links parameterised validation

{integerInput `satisfies` (isGreaterThan(5) `errorMsg` fun () { "not greater than 5" })}

Code Listing 4.6. PHP parameterised validation

if (isGreaterThan(5,$ POST['number'])) { $errors['number'] = "not greater than 5" }

26 4. FORM HANDLING

Compared to the equivalent in PHP given in Code Listing 4.6, the Links code is again
more readable, continuing to follow a “sentence-like” structure. It is not interspersed
with the name of the variable being checked, and defines all the validation require-
ments, both integer and the greater than constraint, on a single line. The validation
process in PHP requires checks to be made in a linear fashion, hence the programmer
must refer to earlier statements to determine how a particular field is validated.

Parameterising Formlets

The functional aspect of Links allows for extension of the above validation even fur-
ther: it is possible to parameterise the formlet-generating function, resulting in formlet
that can validate their input is greater than any specified integer (see Code Listing 4.7
for an example). This can then be utilised in any form using inputIntegerGreaterThan(x).
This simple extension of the validation is not possible in PHP, as there is no concept
of a form input type. Instead, the validation is handled on a per-field, per-form basis,
hence different forms having different bounds for acceptable input could share little
code – they would all be required to call a specific validation method each time they
were used. This will inevitably result in a degree of code duplication within the PHP
application.

Code Listing 4.7. Links code for a parameterised formlet

sig isGreaterThan : (Int) −> ((Int) −> Bool)
fun isGreaterThan (x) {

fun (y) { y > x }
}
fun inputIntegerGreaterThan (x) {

inputInteger `satisfies` (isGreaterThan(x)
`errorMsg` fun () { "must be greater than " ++ intToString(x) })

}

4.3.5 Flexibility & Control

Whilst the PHP approach of leaving all aspects of form handling up to the developer
has been critised in previous sections, it does offer a higher degree of flexibility than
Links. Using PHP, the developer has ultimate control over exactly how and where
error messages are displayed on the client: they can be grouped together at the top of
the page with a short message; displayed above, beside or below the offending field;
or anywhere else that is appropriate such as a sidebar. Links however inserts the error
message directly after the formlet code in a span tag, with a single class attribute
of “error”. This presents no problems for small formlets with only a few input fields,
however when applied to large formlets this default placement is far less suitable.

4.3. COMPARISON OF IMPLEMENTATIONS 27

Large forms may have complex validation requirements that can only be computed
once all the data is available, hence in Links must be applied to the entire formlet.
With the error message always appearing at the end, the user may be confused as: a) it
may not be immediately visible on the page, and b) it may no longer relate to the fields
that actually caused the error. An example of this unattractive and unintuitive error
message placement can be found in the milestone formlet in linksCollab, shown in
Figure 4.4.

Control over the styling of the error messages is also restricted in Links, as developers
are unable to dictate the XHTML that is generated. Displaying errors in a floating
box, for example, would be impossible as it requires multiple div tags with different
attributes; a single span tag does not allow for a large degree of flexibility.

The increased developer control when using PHP, whilst offering advantages in some
respects, does not come without penalty. All output XHTML has to be manually gen-
erated through string concatenation, which is prone to errors and can easily become
confusing. This is especially true especially when handling the re-creation of drop-
down selections or checkboxes with default values, usually involving numerous loops
and conditional statements.

4.3.6 Limitations of Links Formlets

Naming Fields

Links handles all naming of form fields with the name attribute automatically. This
removes the possibility of programmers accidentally duplicating names within forms,
as well as preventing the need to remember or refer to names that have been used
in the forms. However it also has the effect of reducing developers’ flexibility with
surrounding form markup. Accessibility guidelines (W3C, 1999) dictate that form
elements should be noted by label tags, but in Links, as the names of form elements

Figure 4.4: Unattractive error message placement with formlets

Home Projects Profile Admin Logout

Dashboard Milestones Tasklists Discussions

Active Milestones Completed Milestones Add Milestone

Summary:

Start Date: / /

End Date: / /

Priority: NormalNormal

Add Milestone

Copyright Steve Strugnell 2007-2008Dashboard Milestones Tasklists Discussions

Milestones

Add Milestone

End date is before start
date

This is the milestone summary

03 03 2008

01 03 2008

28 4. FORM HANDLING

are unknown, it is no longer possible to use the for attribute of the label tag to point
to an input field. In most cases this does not present an accessibility issue, as the
input field can usually be contained within the label tag itself, however it may cause
complications for complex layouts where the caption is somewhat distant from the
actual input field within the markup language.

Recognising Submission Failures

There may also be situations where a developer needs to take action if a form sub-
mission fails, perhaps for carrying out a usability assessment or tracking the number
of unsuccessful login attempts. In Links, such functionality must be built into each
individual validation function for every formlet – there is no method of discovering
whether a form submission has failed outside of these functions. This limits the effec-
tiveness of the component re-use, as it may not be necessary to have such functionality
present for every instance of the formlet in the application. In PHP the detection of
failed submissions is trivial, individual forms are easily tailored for this purpose, and
there is no limit to the subsequent action that can be taken, whether this involves dis-
playing a message alongside the re-displayed form or invoking an entirely separate
operation.

Duplication of Tasks

Removing developer handling of form validation can also introduce unnecessary du-
plication of tasks within the application. Formlet validation is used for authentication
in linksCollab, requiring a database query to confirm the validity of the username and
password entered. This makes use of a getUserId function, however as this valida-
tion is handled entirely by the built-in form processing it is not possible to access the
result of this function call – the user identifier to use for the session must be extracted
with a further database query. This task repetition, especially when involving database
access, leads to less efficient code. In PHP, the result of the initial database lookup
could be easily stored in a variable and used during later processing where appropri-
ate, resulting in a far more economical solution.

5. State & Continuations

In this context, state refers to information that persists across multiple page refreshes
during a client’s browsing, usually for a single session. A session can be thought of as
the period from when a client first connects to a web server to when they close their
web browser, or otherwise remove any cookies relating to the site.

Hypertext Transfer Protocol (HTTP) is a stateless protocol (IETF, 1999), with each
request handled independently from any previous requests. Cookies were introduced
into the HTTP protocol to provide a means of recognition when a particular client
revisits a domain (IETF, 1997). These are packets of textual data stored on the client
system that are created by, and associated with, a particular domain. When generating
an HTTP request to a particular domain, the client embeds the associated data into
the request. They partly solve the problem of the stateless protocol, but are relatively
insecure and impractical to use to store large volumes of information. This leaves the
task of maintaining state to be implemented in the server-side language.

Existing solutions

Most server-side solutions for maintaining state, such as the Active Server Pages (ASP)
.NET language set and PHP, use unique session identifiers, either embedded in the
Universal Resource Locator (URL), or stored in a cookie on the client (Microsoft,
2007; PHP Manual, 2007). Upon subsequent requests, this identifier is used to retrieve
data that has been stored on the server. An example of this in PHP is the $ SESSION
variable, which can be used by the developer to store data on a per-user basis, with
PHP automatically handling the propagation of the necessary session identifier. This
appears to be a sensible and effective solution, however it has become “common be-
haviour” (Weinreich et al., 2006) for users to open more than one window during web
browsing, causing problems with this design.

5.1 Problems with Multi-Windowed Sessions

For the purposes of this section, a window refers to a separate instance of the client
browser, whether this a different tab in an existing window, or an entirely detached
window. It is assumed, however, that all windows access the same client-side cookie
data.

When browsing a particular website, users often do not follow a single path – instead
they branch out, opening many links at once into multiple windows (Aula et al., 2005).

29

30 5. STATE & CONTINUATIONS

This is especially true when using sites offering services such as booking flights and
hotels, where it is likely the user will compare many different options and prices before
proceeding with any particular choice. If the current set of results is stored on the
server, the user may encounter error messages or incorrect results when attempting to
make a booking or purchase. Utilising server storage for maintenance of state allows
for only one set of state variables per user. Different windows interact with this single
set, overriding each others current state, and this results in unexpected behaviour in the
application. A brief search revealed two such sites that exhibit these problems:

• eBookers (www.ebookers.com) - when using two windows and searching for
flights to two different locations, and error page will appear when trying to book
flights that are not part of the most recent search results.

• 1&1 Internet (www.oneandone.co.uk) - when using the control panel, it is not
possible to open the administration console for two or more different domain
packages – all windows refer to the most recently selected domain.

5.2 Continuations

A continuation “represents the remaining flow of execution of a program” (Quan et al.,
2003). Functional programs lend themselves well to implementing continuations, as
functions are treated as first-class values. The remaining execution in functional lan-
guages is simply a nest of functions, hence it is a straightforward process to pass this
state to another function or to serialise it to a storage medium. The utility of contin-
uations in web applications has been widely recognised, and is already implemented
in languages such as PLT/Scheme (Graunke et al., 2001) and WASH/CGI (Thiemann,
2005).

5.2.1 Client-side maintenance of state

Links uses continuations to store the state on the client-side, embedded within the page
as an string. This string is the serialised state of the program (Cooper et al., 2006),
encapsulating what must be done next. In this manner the state is maintained on a
per-window basis, rather than a per user basis as in the server-side storage scenario.
This allows for an unlimited number of concurrent windows to be opened by the user,
with the state of each remaining entirely independent. Queinnec (2003) outlines the
advantages of such a method, namely that there is little interference from the back
and forward browser buttons, and the user has the flexibility to continue any stage of
a process at any time, and in any window, without any cross-process interactions. It
also aids programmers, allowing them to code in “direct style” rather than on a page-
centric basis, avoiding the storage of state information in databases, cookies and URLs

5.2. CONTINUATIONS 31

(Queinnec, 2003; Krishnamurthi, 2003). This is evidenced in the comparison between
the Links and PHP methods for implementing login functionality in Section 5.5.

Disadvantages of client-side state in Links

The Links client-side method of storing state through continuations does have its dis-
advantages. The first of these is security – the entire state of the program is saved into
the client page, including any sensitive personal data that may have been entered into
forms by the user. The continuation is only encoded in Base64, making it relatively
easy for a malicious user to read and manipulate, potentially compromising personal
details or allowing for unwanted and dangerous execution of functions. To ensure ad-
equate security, the continuation should be encrypted using a key stored on the server
before being delivered to the client.

The second disadvantage concerns search engines. Search engines index URLs, how-
ever in Links there is no single static URL available to view a particular page or item,
as each URL has the current continuation embedded. When navigating a site written
in Links, a typical URL looks as follows:

http://linkscollab.stevestrugnell.net/milestone.links? k=AgEFX2Fub2
4QUWM7LsXetmXUySQSyjGMeAELX2czMzJfZzE1MDkCAQVfYW5vbhBysF3vSRA0YnKdDp
dXfrmZAQtfZzEyM19nMjA0MwMEATEIBQIxMwEyBhgIATMIAXIIAWQIASAIAVAIAXIIAW
8IAWoIAWUIAWMIAXQIASAIAVAIAXIIAWUIAXMIAWUIAW4IAXQIAWEIAXQIAWkIAW8IAW
4BMwYTCAEyCAEwCAEwCAE4CAEtCAEwCAEyCAEtCAEwCAExCAEgCAEwCAEwCAE6CAEwCA
EwCAE6CAEwCAEwATQIBQExBV9hbm9uBV9hbm9u

This is unsightly, meaningless, and likely to become fragmented if posted on forums
or sent by email. A link to the same page within a PHP application is more likely to
look like the following:

http://linkscollab.stevestrugnell.net/milestone.php?id=15

The Apache mod rewrite module could then be used so that this can be represented
to the user as:

http://linkscollab.stevestrugnell.net/milestone/15/summary-goes-here

This is a far cleaner URL: it is far shorter, more readable, easier to recite and also
includes keywords from the page to assist with search engine rankings.

An additional problem with Links URLs is that every time the underlying code is
changed, all bookmarks and existing links cease to function. The program displays
a “Program Point Not Found” error, as the continuation cannot be correlated with the
source code. This is very poor for search engines, as they will have indexed content that
is subsequently unavailable. The lack of a static URL also makes it difficult for other

32 5. STATE & CONTINUATIONS

sites to create hyperlinks to particular pages, again impacting search engine rankings
and disadvantaging Links web applications.

5.3 Global State

Global state refers to data in an application that can be accessed by any function, at
any point. PHP already has a notion of global state; as it is an imperative language, a
variable can simply be declared at the top of a script, and is therefore available for the
remainder of the execution of that script. Links however, being a functional language,
does not benefit from the same ease of global state storage. For functions to have
access to data, that data must be passed in as an argument.

This caused difficulties in linksCollab when implementing the multi-project function-
ality. A large majority of the functions require access to the current project identifier
in order to display the correct milestones or tasks, and add newly created items to the
correct project. In order to maintain the multi-window functionality, it is not possible
to store this value in a cookie or the database – users must be able to work on different
projects concurrently using multiple windows. This means that every function that re-
quires the projectid variable must take it as an argument, leading to this value being
threaded through all the different functions that are used to create a page. Essentially
the first argument of every function is the global state. To prevent such a necessity,
Links would strongly benefit from a data store that is available from any function, and
is persisted to the client alongside the program continuation. Programmers could use
functions such as setState and getState to store and retrieve information such as
the project identifier, avoiding the repetition of arguments across numerous functions
purely to preserve a value.

A global state can currently be simulated in Links by spawning an independent process,
and inter-process message passing used to send and receive information to and from
this process when required. Unfortunately this is not yet supported for Links server-
side execution, making it unavailable for use in linksCollab.

5.4 Mid-Process User Input

In many cases when developing an application it becomes necessary to prompt the
user for further information, either before or during an event or process. Users of
desktop applications will be familiar with the interruptions of dialog boxes used for
this purpose, however transferring such functionality to the web requires the use of
intermediate or transitional pages.

5.5. IMPLEMENTING A SECURE LOGIN 33

Programming these pages for web applications presents a number of challenges. On
occasions these pages are not mandatory, with complex processes taking place before
it is known whether further input will be required from the user. They must be cus-
tomisable and dynamic to allow for reusability across the application, and be simple to
create and implement. The following sections present the Links solution to this prob-
lem using continuations, describing how they are used in linksCollab, as well as the
difficulties in duplicating such functionality cleanly and efficiently in PHP.

5.5 Implementing a Secure Login

Secure authentication is a crucial requirement for linksCollab. To be successful it re-
quires multiple users to interact with a single set of data, whilst maintaining traceabil-
ity, upholding security, and allowing for per-user customisation. This section describes
the challenges involved in creating an effective login system, and the eventual solution
found for implementing login functions in Links. It then offers an examination of how
login capabilities might be implemented in PHP and the difficulties in attempting to
mirror the seamless progression that Links can offer.

5.5.1 Login in Links

In a Links application, execution of the program may begin at any number of functions
within a particular file when the client makes a request. For this reason it is necessary
to obtain the current user credentials at several different points to: a) ensure they are
currently logged in, and their session has not timed out b) check they have permission
to perform the requested operation, and c) display user-associated information such
as a user’s current starred items. In linksCollab, a checkLogin function is called
whenever these details are required. Initially, this function either returned the current
user’s credentials, or redirected to the login page if a valid session was not found. It is
now implemented in a different manner using continuations, described in Section 5.6.

5.5.2 Protection in PHP

Protecting pages from unauthorised access in PHP is initially a simpler process. Unlike
Links, with every request for a PHP script the program execution begins at the top of
the file, therefore placing the check for a valid session at the start will secure the page
from clients that are not logged in. To extend this further, a developer might pass the
requested URL to the login function such that the user can be returned to the page they
initially attempted to visit once they have successfully authenticated. The checkLogin
function in Code Listing 5.1 checks to see if a valid session exists. If so, the function

34 5. STATE & CONTINUATIONS

Code Listing 5.1. PHP code for simple login functionality

// top of normal application page
include("common/login.php");
$userdata = getLoginData($ SERVER['REQUEST_URI']);
if (hasPermission($userdata["userid"],"do_something"))

...
// login.php
function getLoginData($url) {

if (isLoggedIn()) {
return getDataFromSession();

}
// display login form with the passed URL embedded
displayLoginForm($url)

}
if (isset($ POST['login'])) {

if (isLoginValid()) {
// redirect to original URL
header("Location:" . $ POST['url']);

}
else {

// this also has to handle all error messages and redisplay
// any already submitted data if required (e.g., username)
displayLoginForm($ POST['url'])

}
}

simply returns the user’s information, otherwise it displays the login form, which has
the action attribute of the form tag set to “login.php”, and the redirection URL placed
in a hidden field . When the user submits the form, their credentials are checked, and
if found to be valid they are redirected to the URL that invoked the initial login check.
Chapter 4 dealt with the methodology and complications of PHP form handling, so the
code for this aspect has been replaced with simple function calls.

5.6 Seamless Logins Using sendSuspend

As Links has little direct control over the HTTP headers, and does not include func-
tions for redirecting the client to another location, the URL redirection method de-
tailed in Section 5.5.2 above is complex to implement. Whilst the previous Links
login method satisfied basic requirements for authentication, it did not take advantage
of the extensive benefits that can be realised using Links and continuations.

The Links function sendSuspend allows for mid-process user input in web applica-
tions. It passes the current environment as an argument to a page-generating function,
which renders the intermediate page and delivers it to the client, using the passed envi-

5.6. SEAMLESS LOGINS USING SENDSUSPEND 35

ronment as the target of a link or form submission. As the current state of the program
is saved in the page, when the user clicks a link or submits a form it can resume exe-
cution from the exact point at which it was stopped.

By implementing the checkLogin function using sendSuspend, it is possible to use
a single function call at any point within the program that: a) returns the current user
credentials, or b) if they are not logged in, displays the login page and subsequently
returns their credentials once they have successfully authenticated. The call to this
function is placed at the start of all functions that are accessible from a page, either
through clicking a link or submitting a form. This ensures that no action, such as
adding a milestone or deleting a task, can take place without the user being currently
logged in, even if they were logged in when commencing the process.

This approach has many advantages for the client. It offers a seamless login process,
such that the user can request any page (e.g., navigate direct to milestone.links), be
presented with the login page, and upon successful authentication proceed to the des-
tination page. There is no URL redirection involved, reducing the number of request-
response communications with the server and thereby increasing efficiency of the ap-
plication. This URL redirection functionality is easily reproduced in PHP without
continuations as shown in Section 5.5.2 above, however sendSuspend offers a further
benefit that is far more difficult to implement in PHP; in addition to always reaching
the requested page, the user will never lose their location in an application process,
even if their session expires or is otherwise lost.

5.6.1 Preserving user processes across login sessions

Session expiration can occur for many reasons; a time-out on the server, reaching the
cookie expiration time, or logging in on another web browser or system will all cause
the session to end. In applications that require authentication, it is rarely possible
to process any user submitted data without ensuring the client has necessary permis-
sions, hence they must be re-authenticated before this can take place. Problems arise,
however, if the session times out whilst the user is completing a complex form or is
part-way through a lengthy business process. In most applications, attempting to pro-
ceed at this point would cause the login page to be displayed, and all data entered into
the form to be lost.

Using Links and sendSuspend to authenticate users overcomes this problem, as the
code resumes not from a particular page, but from the exact point at which the user
credentials are required in the application. If the user has just clicked the submit button
on a form when their session has expired, the data they have entered will be saved in
the continuation that is resumed upon a successful login, hence no data is lost and
the application proceeds as though the login interruption had not taken place. From a
usability perspective this is an important feature, as it is very frustrating for users to

36 5. STATE & CONTINUATIONS

lose form data that may have taken a substantial effort to create. Figure 5.1 shows how
sendSuspend is used in linksCollab to preserve a long discussion post when the user’s
session expires.

Not only does the sendSuspend implementation offer greater usability to clients, it is
also far easier to implement than the PHP redirection approach; using Links, the above
behaviour can be implemented with only two or three additional commands. Code
Listing 5.2 shows snippets of the code used in linksCollab to demonstrate how little
additional effort is required – it only takes the addition of the sendSuspend function
call to dramatically improve the usability of the application, as the other functions
used are required for any basic login system. The code to suspend the process and
display the form is in only a single location, also easing maintenance and debugging
operations.

5.7 Seamless Logins in PHP

The Links solution offers a very simple way to retain all client data and progress across
one or more intermediate stages such as re-authentications. This section describes

Figure 5.1: linksCollab preserves a user’s long discussion post following a session
expiration

Sub
mit L

og
in

Submit Form

The user’s session times out
whilst they are working on a
long discussion post.

When submitting the form the
application checks for valid
credentials. None are found so
the login form is displayed.

User submits the login form
having entered their details.

The application resumes at the exact
point it was left. The discussion post is
saved successfully and no data is lost.

5.7. SEAMLESS LOGINS IN PHP 37

Code Listing 5.2. Links code for creating a sendSuspend login system

fun getLoginData () {
if (not(isLoggedIn())) {

var credentials = sendSuspend (fun (env) { displayLoginPage (env) })
getLoginDataFromCredentials(credentials)

}
else {

getLoginDataFromSession()
}

}
fun displayLoginPage (env) {

page
<#>{ loginFormlet => env }</#>

}
fun doSomethingThatRequiresAuth () {

this one line takes care of ensuring the user is successfully logged in,
displaying the login form if necessary and also returning all relevant data
var user = getLoginData();
if (hasPermission(user.userid,"do_something"))

...
}

the possible approaches to replicate such functionality in PHP, detailing some of the
problems and challenges involved.

5.7.1 URL Parameters

Many PHP applications use parameters in the URL to direct scripts to perform particu-
lar functions; milestone.php?id=3 would result in the application displaying details
for the milestone with identifier ”3”. Preservation of this type of information through
the login process is accommodated within the previously mentioned URL redirection
solution, as the data itself is retained within the requested URL. However, difficulties
are encountered when we examine a scenario involving form submission.

5.7.2 Saving Form Submissions

Forms are submitted using the HTTP POST method – the data is appended to the HTTP
request rather than being encoded in the URL. Preserving this submitted data through
subsequent page deliveries and form submissions is a complex task. One immediate
solution might be to transfer all the data from the $ POST array to the $ SESSION
variable when an intermediate page display is required. This would save all name/value
pairs submitted to the page into the user’s current session stored on the server. This
data could then be retrieved when the login is complete and the client is redirected

38 5. STATE & CONTINUATIONS

to the calling URL. The drawback of this method is that the user is prevented from
submitting forms in more than one window, as the data that was submitted prior would
be lost (PHP sessions are on a per-user basis). It is essential that the data is either
maintained in storage with a unique identifier, or alternatively retained on the client-
side. One method that utilises the client-side approach is as follows:

1. When no login is detected, as well as saving the requested URL, decompose the
HTTP request and obtain the submitted name/value pairs

2. Embed all these pairs into the login form as hidden fields

3. Upon successful login, re-assemble the HTTP POST request from the hidden
fields and submit to the originally requested URL

This is a demanding feat, requiring a strong understanding of the HTTP protocols and
ability to construct the requests manually. There is also the consideration that the form
data, being temporarily stored in hidden fields, could be modified before being returned
to the application. Replicating the seamless continuity found with sendSuspend in
PHP is exceptionally complicated, far more prone to errors and is not nearly as clean
and efficient. It also still requires a greater number of HTTP requests before the client
reaches the final page.

An alternative solution is for each form to have a hidden field containing the destina-
tion function – the function that processes the form data. If an intermediate page is
required, any submitted data is saved along with a unique identifier to retrieve it, and
this identifier is progressed through the intermediate pages using a hidden field. When
the original page is recalled, it can examine the saved data and resume at the requested
function. Code Listing 5.3 gives pseudo code for this implementation.

There are a number of drawbacks to this solution: a) every page requires customised
code to retrieve data and pass it to the appropriate child function, b) every page has to
handle standard HTTP POST requests in addition to resuming following intermediate
pages, and c) any processes that require an intermediate page must be split into two
separate functions – a pre-page section, and the post-page continuation of the process.
A further complication arises when considering that the requirement for an intermedi-
ate page may be conditional, so in some cases they may not be required. In addition,
implementing this solution requires modification of every form within the application
to include the target function, and every page to process the results. It takes significant
effort to implement, complicates otherwise simple processes, and consists of numer-
ous dependencies between the intermediate pages and the normal application pages,
making it difficult to maintain and debug.

5.8. FURTHER USE OF SENDSUSPEND 39

Code Listing 5.3. Pseudo-PHP code to implement seamless login

if (notLoggedIn()) {
$target = $ POST['target_function'];
$id = makeNewId();
savePostDataWithId($ POST,$id);
// display login page, giving all required information for postback
displayLoginPage("milestone.php",$target,$id);
exit;

}
// check if this is a normal request or a ”continuation” request
if (isset($ POST['is_continuation'])isContinuation()) {

$data = retrieveDataFromId($ POST['continuation_id']);
$target = $ POST['target_function'];
switch ($target) {

case "addMilestone":
// obtain required values for this function from $data

...
addMilestone($summary,$

break;
case "otherFunction":

...
}

}
// page code to handle standard HTTP POST requests as well as
// normal application functions continues here

5.8 Further use of sendSuspend

Due to the straightforward method in Links for implementing intermediate pages,
they were also used in a number of other instances throughout linksCollab. A sim-
ilar method to the login functionality was included for project selection – if the user
has no current project they are prompted to select one during processes such as adding
milestones and creating discussions. Another use of sendSuspend was to create a
flexible confirm function. This takes a message and the response choices as argu-
ments, and generates a page that prompts the user for confirmation before performing
a task, such as deleting a milestone. The function simply returns true or false in the
context of the application code, but from a user perspective displays a confirmation
page to verify execution of a process. Figure 5.2 emphasises how the programmer
benefits from continuations by using the confirm function in direct coding style – the
deleteMilestone function is written as one continuous process, despite requiring an
intermediate page and user input before completing.

40 5. STATE & CONTINUATIONS

Figure 5.2: Confirmation page in linksCollab

sig deleteMilestone : (Int,String) -> Page
fun deleteMilestone(milestoneid,name) {

var login = checkLogin();
if (not(checkPermission(login.userid,"delete_milestone"))) {

pageMilestones(ErrorMessage("No permission to delete milestones"),0)
}
else {

var confirm =
getActionConfirmation("milestones","Milestones",milestonesToolbar(),
<p>Are you sure you want to delete the

milestone {stringToXml("\"" ++ name ++ "\"")}?</p>,
"Yes, delete milestone",
"No, go back"

);
if (confirm) {

delete (var milestone <-- tb_milestone)
where (milestone.milestoneid == milestoneid);

freshResource();
pageMilestones(SuccessMessage("Milestone deleted successfully"),0)

}
else {

pageMilestones(InfoMessage("Milestone deletion cancelled"),0)
}

}
}

Delete

Confirm
ation

Completion

5.8.1 Continuations in PHP

The reason this initially complicated scenario is so simple to solve in Links is due to its
native continuations – the remainder of the computation can be saved at any point and
resumed when required. Implementing continuations in imperative languages is far
more complex, as the state of all objects and variables must be preserved in addition
to the current execution call stack. This section briefly outlines how continuations
might be achieved in PHP, examining the scalability and suitability of some existing
implementations.

One such implementation is phpcontinuation (Kaae, 2007). Each page is imple-
mented as a class extending a base PHPContinuation class, with a function to render
the page for each request. Each instance of a page class has a unique ID, which is
stored alongside the serialised class itself in the PHP $ SESSION array. Upon subse-
quent requests with that identifier, the class is restored, and the onRepaint function
called to render the page. This implementation of continuations is simple and func-
tional for small examples such as a counter, but scalability is limited; every page must
be constructed as a single class, and linking to other page classes causes the loss of all
stored data in the current class. In addition, storing the serialised data for a large page
class, for multiple users and multiple invocations, all within the server-side $ SESSION
variable is impractical. Availability of memory for the PHP process would be a limiting
factor, and there is also the consideration of when and how to purge these continua-
tions.

Another technique involves creating mini-languages (Vlado, 2006). PHP is used to

5.9. SUMMARY 41

create a basic parser and interpreter, and commands are given as arrays of function
names and parameters. The interpreter class can be serialised at any point and per-
sisted, retaining the execution stack and allowing it to be restored when required. The
problems with this approach are that: a) it requires creating every single function re-
quired within this “sub-language”, including all operations such as add and multiply,
and b) the language syntax is dramatically changed and becomes more complex, for
example assigning a variable becomes $prog->let(’num’,5).

5.9 Summary

Links storage of data on the client-side enables per-window state persistence, remov-
ing the cross-window interactions commonly seen when using traditional server-side
state storage. This has advantages for creating functional applications for multi-tabbed
browsers, however it does suffer from unsightly and unstable URLs, and potential se-
curity implications with the encoding of the continuation.

Links has a clear advantage for developers when requiring mid-process user inter-
action. The ease of implementing these pages in Links is such that they are far more
likely to be used, even where not strictly necessary. Rather than resorting to Javascript
to display prompts to the user, pages can easily be integrated into the application code
with a simple function call. This approach offers accessibility and security benefits by
enabling the application to be used without Javascript enabled. The Links solution is
also far more concise, readable, and reliable than the PHP alternative; only a single
line of code is required where it is implemented, the flow of the application process is
not interrupted where the intermediate pages are served, and the programmer does not
have to contend with custom HTTP requests or accounting for the possibility of client
modification of return parameters.

From a maintainability and readability perspective Links also offers the superior solu-
tion; the application can be coded in “direct style”, making it trivial to follow the user
journey from one function to the next. The intermediate page code, along with its as-
sociated submission or progression handling, is entirely independent from where it is
used in application processes. This enables easy modification of the page code without
requiring any further changes in the application. In PHP, creating a global confirm
function that can be used at any point is far less succinct – every page requires custom
handling of the name/value pairs received from the confirmation page, leading to large
scale duplication and complex interactions of code.

Links enables what is traditionally a complex application feature to be implemented
cleanly and efficiently in very few steps through the use of continuations. PHP strug-

42 5. STATE & CONTINUATIONS

gles to match the ease at which these intermediate pages can be incorporated in Links,
and whilst it is possible to reproduce the functionality, the solutions are untidy, unscal-
able, and unlikely to warrant the development effort and expertise to implement.

6. Database Operations

Any large scale web application requires a means to store information; relational
Database Management Systems (DMBS) offer fast, scalable and efficient storage and
retrieval of data. Due to the use of databases as the dominant back-end storage medium
for the web, it is important that developers have a powerful, effective, yet simple inter-
face to perform operations such as inserting, updating and extracting data.

This chapter describes how database operations are performed in both Links and PHP,
highlighting the positive and negative aspects of each approach. This is followed by
an examination of two features in linksCollab – permissions in Section 6.6, and the
dashboard page in Section 6.7 – that make use of the database functionality in Links,
highlighting some of the particular problems encountered with query efficiency and
flexibility.

Throughout this chapter, Links generated SQL queries have had table names adjusted
for readability purposes, and the target DBMS is MySQL.

6.1 Terminology

Within this chapter the following terms will be used:

• Table - a collection of information in a database surrounding a particular entity,
e.g., table of milestones.

• Record - a single row from a database table, e.g., a particular milestone.

• Field - referring to a single column from a database table, e.g., start date.

• Query - an instruction to the DBMS to perform a particular action, usually in-
serting, updating, deleting or returning data.

6.2 Databases in PHP

Database interaction in PHP utilises an independent set of library functions. These
include those to initially connect to the database (mysql connnect), execute queries
(mysql query), and handle result sets (mysql result family). Queries in PHP are
written manually by the developer in Structured Query Language (SQL) – a common
database dialect used to give instructions to the DBMS. A short code excerpt for
connecting to the database and performing a typical data retrieval operation in PHP

43

44 6. DATABASE OPERATIONS

is shown in Code Listing 6.1. It retrieves the summary and priority for all milestones
that are not completed (completed == 0) and prints them out. Note how there are
commands to first retrieve the result set, and then to explicitly convert it to a type
suitable for handling in PHP (in this case an associative array).

Code Listing 6.1. PHP code for a simple data retrieval operation

// connect to database
$db = mysql connect("localhost","username","password");
// select database to use
mysql select db("links");
// execute query
$result = mysql query("SELECT summary, priority FROM milestone WHERE completed = 0");
// convert MySQL result to an associative array
$milestones = mysql fetch assoc($result);
// loop through the results, printing each record
foreach ($milestones as $milestone) {

echo $milestone['priority'] . " - " . $milestone['summary'] . "\n";
}

6.3 Databases in Links

Database operations in Links are handled very differently. Rather than using an in-
dependent library of commands, database queries are carried out using standard lan-
guage constructs such as for loops. The developer requires no SQL knowledge, as the
compiler handles the conversion of Links code to SQL queries suitable for the chosen
DBMS. The Links equivalent to the connection and data retrieval operation used above
is shown in Code Listing 6.2.

Code Listing 6.2. Links code for a simple data retrieval operation

define database
var db = database "links" "mysql" "localhost:3306:username:password";
define table handler (truncated in this example − would normally include entire table)
var tb milestone = table "milestone" with

(summary : String, priority : Int, completed : Int) from db;
execute query and store list of results in (summary,priority) format
var results = for (var milestone <−− tb milestone)

where (milestone.completed == 0)
[(milestone.summary, milestone.priority)];

generate output string using list comprehension
var output = for (var (summary,priority) <− results)

summary ++ " - " ++ intToString(priority);
print output
print(output);

6.4. ADVANTAGES OF LINKS 45

The database operation is structured in a similar manner to any other Links list compre-
hension, the only difference being it uses the specific database operator “<--” as syn-
tactic sugar, preventing the developer having to first manually convert the tb milestone
table handle to a list using the asList function. The fields of the table are accessed
using the same syntax that is used for string-indexed tuples, maintaining consistency
across the language. The return type from the database for construct can be used in
the same way as any other Links list, and is strongly typed according to the definitions
defined in the table handler.

6.4 Advantages of Links

The Links method has many advantages over the PHP method for database interaction.
This section describes the benefits achieved through strongly integrating database op-
erations into the language.

6.4.1 Impedance Mismatch Problem

The Links solution overcomes the impedance mismatch problem, as the data is re-
turned from the database as standard Links datatypes. This allows programmers to
create functions that utilise data direct from the database, avoiding the difficulties
of converting between differing language types, or having to explicitly cast to native
types. PHP database functions simply return an array of data, leaving the developer the
responsibility of ensuring that data of each type is correctly handled in the application.

6.4.2 No SQL Required

There is no requirement for the programmer to learn SQL in order to use databases in
Links. Whilst SQL is still required to initially create the tables, many tools are avail-
able to automatically generate this for any chosen table structure (e.g., WWW SQL De-
signer). This is a very attractive proposition to new web developers, who currently have
to learn upwards of two languages to reach even a basic level of competency. It also
removes the complexities associated with learning differing SQL dialects, as Links
offers connectivity to three widely used DBMSs (PostgreSQL, MySQL and SQLite)
with only a single change required in the initial database declaration.

46 6. DATABASE OPERATIONS

6.4.3 Security

Removing the necessity for the programmer to manually create SQL statements has
numerous benefits. First, it eliminates the complications of constructing valid SQL
from dynamic data, ensuring that punctuation such as quotes, commas and brackets
are always correctly positioned and balanced. Second, the developer does not have
to be concerned with escaping invalid characters in strings, e.g., double quotes. This
point has one major security benefit – it eliminates the possibility of SQL injection
attacks. SQL injection occurs when a malicious client inserts their own commands into
a database query, usually through incorrectly validated or escaped user input (Joshi,
2005). Code Listing 6.3 contains PHP code that is vulnerable to SQL injection due to
insufficient validation and escaping of form submission data. This fragment of code
can be exploited in no less than three different ways, varying from receiving escalated
escalating privileges, through to destructive attacks using DROP commands to delete
entire database tables (Morgan, 2006).

Code Listing 6.3. PHP code subject to an SQL injection attack

// obtain username and password submitted through login form
$username = $ POST['username'];
$password = $ POST['password'];
// create query to check for valid username and password
$query = "SELECT userid FROM user

WHERE username='" . $username ."'
AND password='" . $password . "'";

// execute query
$result = mysql query($query);
if (mysql num rows($result) > 0) {

// valid user
}
else {

// invalid login
}

As user input to SQL statements is very common (e.g., website login and search func-
tions), it is essential that the all user input used in SQL strings is strictly validated and
passed through sanitation functions to escape characters such as quotes and comments.
In PHP, developers are responsible for implementing these security barriers; even in
small applications this can be a time-consuming and easily forgotten task. Developers
inexperienced in the field of web-based programming may not even be aware of the
threat. SQL injection attacks are so prevalent, Visa Inc. (2006) listed them in their top
5 data security vulnerabilities report. Links automatically takes care of this hazard by
encoding values correctly for use in database queries, eliminating this very common
vulnerability in web applications.

6.4. ADVANTAGES OF LINKS 47

6.4.4 Optimisation

As the actual database queries are abstracted away from the Links code written by
the developer, it allows for DBMS-specific optimisations to be made by the compiler.
An example of this is the compilation of Links where clauses in comprehensions to
appropriate SQL WHERE statement, utilising the highly efficient and refined DBMS
code to return only the required records. This helps prevent developers with little
understanding of database optimisation techniques from creating inefficient queries,
for example retrieving an entire table and manually filtering the results.

The use of relational databases commonly requires data to be retrieved from multiple
tables, and Links SQL optimisations are further demonstrated when handling these
tasks. An example in linksCollab is the display of the discussions index page – for
each discussion the full name of the creator is also required alongside the discussion
details. In Links, this is coded using a nested for loop approach: first selecting the
discussions required, then, for each discussion, looping through the users and selecting
the appropriate user based on the discussion creator. The code for this retrieval is
shown in Code Listing 6.4. Developers unfamiliar with SQL are unlikely to understand
the optimum approach in this case, which is to perform an SQL JOIN – to select data
from both tables in the same statement, linking the records based on a common field,
in this case a user identifier. For these types of queries, Links automatically handles
the generation of the optimal SQL, creating the query shown in Code Listing 6.5.
However, at this point it must be noted that there are situations, given in Section 6.7,
when Links produces SQL statements that are far from efficient.

Code Listing 6.4. Links code to retrieve data for the discussions index

for (var d <−− tb discussion)
where (d.projectid == current project && d.closed == closed)

for (var user <−− tb user)
where (user.userid == discussion.creator)

[(d.discussionid, d.title, d.created, d.creator, d.lastpost, user.firstname, user.lastname)]

Code Listing 6.5. SQL generated by the Links code in Code Listing 6.4

SELECT u.lastname, u.firstname, d.lastpost, d.creator, d.created, d.title, d.discussionid
FROM discussion AS d, user AS u
WHERE ((d.projectid = 1)

AND (d.closed = 0))
AND (u.userid = d.creator)

To achieve the same efficiency in PHP, this SQL query would have to be manually
crafted by the developer. Inexperienced database users may not have the expertise to
construct such a query, and may instead revert to using shorter queries inside loops to
retrieve the necessary data. The intuitive method in Links is far simpler for program-
mers to comprehend and create, as it follows basic programming principles of using

48 6. DATABASE OPERATIONS

nested loops to access two dimensional data. This allows for both faster and more ef-
ficient development, realising the power of relational databases without learning their
complex syntax.

6.5 Limitations of Links

During development of linksCollab a number of limitations were encountered in the
use of Links integrated database approach. This section outlines the problems this
caused and describes how they were solved, in doing so highlighting some of the
database functionality that is missing from Links. Section 6.6 uses the linksCollab
permissions system as an example of how the Links implementation of database op-
erations limits flexibility with table structures, while Section 6.7 describes how under
certain circumstances Links compilation to SQL can result in drastically sub-optimal
queries.

6.5.1 Fixed Table Types

Links uses strongly typed TableHandle definitions of tables, following the string-
indexed tuple syntax. Due to static typing, the names of all fields referred to must
be known at compile time. This means the following code to access a field in the
permissions table called “add discussion” results in a type error, as the record perm
does not contain the literal field fieldname:

var fieldname = "add_discussion";
var has permission = for (var perm <−− permissions)

where (perm.userid == current user)
[perm.fieldname];

Error − ”Only a field that is present in a record can be projected”

This restriction can prevent the use of the most rational and efficient table structures,
for example when creating a user permissions system (see Section 6.6).

Updates & Inserts

The static table types also have an impact when performing database operations to
update or insert data. The problem is that all references to a TableHandle must in-
clude all the fields that it provides; for every update or insert command in Links the
programmer is required to provide data for all the columns of the database table. This
introduces a large amount of redundancy in the code, as it is not often that all columns
in a database are updated simultaneously.

6.5. LIMITATIONS OF LINKS 49

Code Listing 6.6. PHP code for marking a milestone as completed

function markMilestoneComplete ($id) {
mysql query("UPDATE milestone SET completed = 1 WHERE milestoneid = $id");

}

Code Listing 6.7. Links code for marking a milestone as completed

fun markMilestoneComplete (milestoneid) {
update (var milestone <−− tb milestone)

where (milestone.milestoneid == milestoneid)
set (

milestoneid = milestone.milestoneid,
projectid = milestone.projectid,
creator = milestone.creator,
summary = milestone.summary,
priority = milestone.priority,
date start = milestone.date start,
date end = milestone.date end,
completed = 1

);
}

Code examples for marking a milestone as completed in both Links and PHP are shown
in Code Listings 6.6 and 6.7. These demonstrate that the PHP approach is considerably
more concise, readable and understandable. The one line SQL statement is easy to
comprehend and makes it clear which fields are being updated, whereas the Links
code requires 14 lines to maintain clarity, yet the columns being updated are far less
obvious. Even if only updating a single column, Links requires code to be written
relating to all columns in the table definition, increasing developer effort. For large
or complex tables this is a considerable task, and may involve referencing the original
table definition in order to ensure all columns are included.

Code Listing 6.8. Reduced Links code for completing a milestone, using a redefined
TableHandle

var tb milestone completed = table "milestone" with (completed : Int) from db;
fun markMilestoneComplete (milestoneid) {

update (var milestone <−− tb milestone completed)
where (milestone.milestoneid == milestoneid)

set (completed = 1);
}

Links does have a solution to this problem – to redefine the TableHandle types as
necessary to include only the columns required. This reduces the Links milestone
completion code to the five lines shown in Code Listing 6.8. This is significantly
shorter and more closely follows the SQL statement in terms of readability and clarity,
however it is still longer than the PHP equivalent. Furthermore, introducing these

50 6. DATABASE OPERATIONS

additional table definitions for the majority of database operations in a large application
could soon become unwieldy.

The problem is exacerbated by the fact that Links has no concept of NULL values,
which are commonly used in databases to signify fields that have no content. Insert-
ing or updating tables with a TIMESTAMP column for example presents difficulties in
Links; standard practice is to ignore these fields in the query and allow the DBMS to
automatically refresh them when a row is altered, or alternatively to insert a NULL value
which also triggers the auto-update for the column. Links does not allow for either of
these approaches, forcing the programmer to either: a) update the timestamp fields
manually, or b) declare alternative table definitions that do not include these columns.

6.5.2 Utilising Database Strengths

Database systems are designed to be incredibly efficient, and a significant amount of
time and effort is invested by the creators in optimising calculations and data retrieval
operations. In light of this, it is often wise for developers to offload as much data se-
lection or manipulation work as possible to the database management system. Sorting,
calculations and comparisons are good examples of activities best performed by the
DBMS for optimal efficiency.

Links offers no direct access to the DBMS, limiting developer flexibility in this re-
spect. Rather than being able to perform simple summations or averages using SQL
SUM() or AVG() functions, they must be carried out using Links once the data has been
returned. Links also only supports sorting records by a field in ascending order, man-
dating use of the reverse function if results are required in descending order. PHP
allows the developer to leverage the full scope of DBMS functionality through direct
SQL queries.

Database systems also offer more advanced features such as transactions and stored
procedures, normally used for larger scale applications. However this functionality is
invoked through complex SQL statements, making it impossible to utilise in Links as
the language does not offer the required level of control. PHP offers developers full
developer control over the SQL queries, allowing programmers to take full advantage
of all DBMS features available.

6.5.3 Query Compilation & Efficiency

Links does attempt to compile developer code to the most efficient SQL, however
it is not always successful. There are many occasions when the compiler produces
extremely sub-optimal queries, or it is not possible for the developer to assert the re-
quired behaviour using the Links syntax. One such occasion is when obtaining the

6.6. CREATING A PERMISSIONS SYSTEM 51

starred status for items such as tasks and milestones, described below. Discussion of
the issues surrounding Links compilation of complex, multi-table nested loops is left
to be examined in the context of the linksCollab dashboard page in Section 6.7.

Obtaining Item Starred Status

Users in linksCollab can mark any item of particular interest as starred, making it
visible on their dashboard page. As this is on a per-user basis, the starred status of
items is stored in a separate table. When retrieving information from the database,
e.g., for the tasks page, it is necessary to also check for each items starred status. Due
to the limitations of Links queries, it is not possible to retrieve the starred status of an
item simultaneously with the item details. This results in an additional query for every
item in order to obtain this status.

The cause is a lack of support for LEFT and RIGHT JOIN commands. These allow
for joining the values in rows from two or more tables based on a particular column
(in this case the item identifier), whilst still including rows from one table that do not
have a matching row in the other. A standard JOIN operation, as created by Links
nested loops, will only return rows that have a matching row in the second table. As
not all items are starred, including the starred table in the Links query results in non-
starred items being left out, rather than the query returning all items along with an
indication of their starred status. Code Listing 6.9 contains an SQL query that retrieves
all task information along with an additional column ”starred” that is either a 1 or
0, demonstrating the use of the LEFT JOIN statement. This query is impossible to
reproduce using Links.

Code Listing 6.9. SQL query to retrieve Tasks along with starred status. Impossible
to duplicate in Links

SELECT task.taskid, task.summary, task.date due, task.priority, task.completed,
IF(ISNULL(starred.itemid),0,1) AS starred

FROM task
LEFT JOIN starred ON task.taskid = starred.itemid
WHERE (starred.itemtype = 2 OR starred.itemtype IS NULL)

AND (starred.userid = 1 OR starred.userid IS NULL)

6.6 Creating a Permissions System

It is very common in PHP to refer to the names of database table fields dynamically.
The required field is simply inserted into the SQL string and the query executed as
normal. A common method of introducing permissions to an application is to use a

52 6. DATABASE OPERATIONS

database table with one column for the user identifier, and a series of columns rep-
resenting the possible permissions (Table 6.1). The check for a particular permission
then simply involves a single cell lookup to determine if the permission is set. A simple
PHP checkPermission function using this method is shown in Code Listing 6.10.

Code Listing 6.10. PHP code for a simple checkPermission function

function checkPermission($userid,$permission) {
$result = mysql query("SELECT `$fieldname` FROM permissions WHERE userid='$userid'");
$row = mysql fetch assoc($result)
return ($row[$permission] == "Y");

}

Due to the static typing issue described above, this same structure is difficult to utilise
effectively in Links. The primary reason for this is that it is not possible to dynamically
retrieve a particular column from the database, as the permission name is not known at
compile time. It is, however, possible to refer to a field within a string-indexed tuple
dynamically, therefore returning the whole row of permissions from the database can
enable a solution – the creation of functions to return the individual permissions from
the database record. Code Listing 6.11 gives an example function for the returning the
edit milestone permission from a full permissions record.

Code Listing 6.11. Links code to return a permission from a database record

sig edit milestone perm : (Permissions) −> Bool
fun edit milestone perm (ps) {

ps.edit milestone
}

One such function is required for every single permission, and in addition the permis-
sion field names must be explicitly stated in every update or insert query. This causes
difficulties when creating new users, as the default permissions to be inserted must be
defined in the source code at compile time. This is very inflexible, and does not allow
for dynamic defaults to be stored in the database and configured by administrators.

Using this table structure in Links has a number of drawbacks: a) all permission names
must be known at compile time, b) functions must be created for every permission,

Table 6.1: Common permissions table structure

userid add milestone edit milestone delete milestone add tasklist ...
1 Y Y Y N ...
2 N N N Y ...
3 Y Y Y Y ...
...

...
...

...
... . . .

6.6. CREATING A PERMISSIONS SYSTEM 53

c) it results in very lengthy and complex insert and update queries, and d) creating the
administration interface for the permissions becomes very complex. Furthermore, it is
feasible that linksCollab may be adapted in the future to store all available permissions
in a database, in which case this table structure becomes unusable due to the dynamic
nature of the column names.

6.6.1 Links Permissions Implementation

Rather than use the previously described table structure, linksCollab is implemented
using an entirely different approach. In order to achieve a static number of columns
(so the field names are known at compile time), the database uses multiple rows per
user, with a single permission in each row (Table 6.2). In the Links checkPermission
function (Code Listing 6.12), the where clause limits the result based on both the user
identifier and the permission string; if a row is returned then the user has the relevant
permission.

Code Listing 6.12. Links code for a checkPermission function

sig checkPermission : (Int, String) −> Bool
fun checkPermission (userid, testPermission) {

check for row in database with given userid and permission to test for
var result = for (var perm <−− tb permission)

where (perm.userid == userid && perm.permission == testPermission)
[perm.permission];

return false if result set is empty, true otherwise
(not(result == []))

}

Table 6.2: Permissions table structure used in linksCollab

userid permission
1 add milestone
1 edit milestone
...

...
2 add discussion
2 edit discussion
...

...

54 6. DATABASE OPERATIONS

6.6.2 Implications

The structure for a permissions system in Links has a number of disadvantages com-
pared to the simple PHP equivalent, namely that it is less efficient, and requires greater
programmer effort to achieve the desired results.

The first drawback of the Links table structure is that the database system cannot cre-
ate a unique index on the userid column, as values appear multiple times. When
performing a permission check in Links, instead of requiring a single cell lookup for
an indexed row, it instead must traverse all permissions for the user and select the re-
quested row. For a small-scale application this has no performance impact, however
from a scalability point of view it could have severe implications on an application
with hundreds or thousands of users.

Modifying permissions is also more complex and less efficient using this structure.
Rather than using a simple UPDATE SQL statement to alter the single row associated
with a user, it is necessary to first remove all permissions and then re-add those that are
granted. This involves a single delete query followed by multiple inserts, which is not
only a significantly greater number of queries, but also causes the DBMS to re-index
the userid column on a regular basis. The situation also worsens when increasing the
number of permissions, as each permission generates an additional row per user in the
database.

Extending the checkPermission function to accept multiple permission checks re-
duces the efficiency even further, as it is not possible in Links to have a dynamic
number of conditional statements in the where clause. Due to this, it is necessary to
retrieve the entire set of permissions for a single user and then use Links code to loop
through the returned permissions check for the presence of those required.

6.7 Creating a Dashboard Page

The dashboard is the most complicated page in linksCollab, as it must extract and
combine data from several different tables to display the required information. For
each item on view it is necessary to retrieve the item details, the starred status, and
any associated information including the summary of the parent tasklist for tasks, or
the full name of the creator for discussions, tasklists and milestones. This makes the
dashboard page a good example for demonstrating how efficient SQL queries can have
a huge performance benefit.

Extracting the data required for the dashboard page in Links uses a complex sequence
of nested for loops – 20 in total. This also does not include the code for obtaining
the starred status of items (the reasons for this are explained in Section 6.5.3), and

6.7. CREATING A DASHBOARD PAGE 55

there is a large degree of repetition – the same data types are retrieved but with vary-
ing conditional clauses. However, the primary issue is not the volume of code, but
the number of SQL queries to which it compiles. The following sections deconstruct
the code to determine how Links is handling the nested loops, and assessing to what
extent this problem scales with more items in the project. The Links SQL output is
also compared to the optimal hand-written SQL code that could be used in a PHP ap-
plication, and other observations are made regarding the relative language strengths in
this respect.

6.7.1 Links SQL Output

A small selection of sample data was used to examine the SQL output of the linksCol-
lab dashboard page, consisting of five overdue items, one upcoming item, and six
starred items. Upon requesting this page, the Links compiler produced 34 separate
queries, 26 of which returned entire database tables with no filtering applied, leav-
ing these operations to be carried out by Links. Retrieving the same data using op-
timal handwritten SQL statements results in only 9 queries (presented in part in Sec-
tion 6.7.1). The following sections examine why this is the case, using the extraction
of milestone data to attempt to understand the Links compilation process.

Retrieving Overdue Milestones in Links

First, examining the Links code (Code Listing 6.13) and resultant SQL (Code List-
ing 6.14) to retrieve overdue milestones reveals that it is compiled rather literally. A
query is first executed to gather all milestones [1], and Links performs the filtering on
the results using the date end, completed and projectid parameters. In order to
obtain the user details, for each milestone Links generates another query to return the
entire users table [2,3]. In each case this list is used to match the creator to the user
identifier, and create the resultant rows that are returned.

Code Listing 6.13. Links code to retrieve overdue milestones

var ov milestone =
for (var milestone <−− tb milestone)

where (milestone.projectid == current project && milestone.completed == 0 && milestone.date end < date)
for (var user <−− tb user)

where (user.userid == milestone.creator)
[(milestoneid=milestone.milestoneid,summary=milestone.summary,

enddate=milestone.date end,priority=milestone.priority,
creatorid=milestone.creator,creatorfirst=user.firstname,creatorlast=user.lastname)];

This has potentially enormous performance implications, as full-table queries are exe-
cuted for each milestone that is overdue. The sample data is relatively small – a large

56 6. DATABASE OPERATIONS

Code Listing 6.14. SQL statements resulting from Links code in Code Listing 6.13

[1] SELECT m.summary, m.projectid, m.priority, m.milestoneid,
m.date start start, m.date end end, m.creator, m.completed

FROM milestone
[2] SELECT u.username, u.userid, u.projectid, u.password,

u.lastname, u.firstname, u.email
FROM user

[3] SELECT u.username, u.userid, u.projectid, u.password,
u.lastname, u.firstname, u.email

FROM user

scale deployment of the application may have hundreds of users, and Links must tra-
verse this list numerous times to find the matching user details. Any increase in the
number of users or milestones in the database will evidently increase the time taken
to execute these operations. In addition, a further query is required per milestone to
retrieve the starred status, as described in Section 6.5.3. The Links implementation in
this case is far from scalable, and is not suited to any sizeable application.

Retrieving Overdue Milestones in PHP

Code Listing 6.15 shows that by manually writing the SQL, the equivalent data can
be retrieved with a single query. This query is guaranteed to return exactly the data
required, including the starred status of each item. Not only does it require signifi-
cantly less queries than the Links approach, it also removes the necessity for any date
manipulation within the program – the computation is pushed onto the DBMS using
DATEDIFF.

Code Listing 6.15. SQL query to return overdue milestones

SELECT milestoneid,creator,summary,priority,date end,firstname,lastname,
IF(ISNULL(itemid),0,1) AS starred

FROM milestone
JOIN user ON milestone.creator = user.userid
LEFT JOIN starred ON milestone.milestoneid = starred.itemid
WHERE DATEDIFF(date end,NOW()) < 0

AND completed = 0
AND (starred.itemtype = 0 OR starred.itemtype IS NULL)
AND (starred.userid = 1 OR starred.userid IS NULL);

When gathering data for the dashboard page, it is necessary to use separate queries
for overdue and upcoming items; these queries are identical except for a portion of
the where clause. A further advantage of using PHP and native SQL is that these
queries can be abstracted to a function that takes an argument for which type to return,

6.7. CREATING A DASHBOARD PAGE 57

reducing both the volume and repetition of code within the dashboard page, increasing
cleanliness and maintainability. In Links it is impossible to factor out this duplication
into a function, as the where clauses cannot be generated dynamically.

6.7.2 Retrieving All Starred Items

In addition to displaying overdue and upcoming items, the dashboard also displays all
items that have been starred by the current user in the current project. This requires
the retrieval of the same data as is required for each item in the overdue or upcoming
lists, but only for those that have been marked as starred.

Once again, achieving this in Links requires numerous nested for constructs to in-
corporate the necessary tables, and where clauses to restrict the returned items (Code
Listing 6.16).

Code Listing 6.16. Links code to retrieve all starred milestones for a user

var milestone typeid = getStarredType("Milestone");
var star milestone =

for (var milestone <−− tb milestone)
where (milestone.projectid == current project)

for (var star <−− tb starred)
where (star.itemid == milestone.milestoneid &&

star.itemtype == milestone typeid &&
star.userid == current user)

for (var user <−− tb user)
where (user.userid == milestone.creator)

[(milestoneid=milestone.milestoneid,summary=milestone.summary,
enddate=milestone.date end,priority=milestone.priority,
creatorid=milestone.creator,creatorfirst=user.firstname,
creatorlast=user.lastname)];

Code Listing 6.17. SQL statement to return all starred milestones for a user

SELECT milestoneid,creator,summary,priority,date end,user.firstname,user.lastname
FROM milestone, user, starred

WHERE milestone.projectid = 1
AND starred.itemid = milestoneid
AND starred.itemtype = 0
AND starred.userid = 1
AND user.userid = milestone.creator

In this case the actual requirement is straightforward – all milestones in the current
project, for which the milestone identifier appears in the starred table alongside the
current userid and itemtype (0 for milestone). The optimal SQL shown in Code
Listing 6.17 clearly reflects these requirements, and is far simpler than the query re-
quired previously for the overdue milestones. In this case it could be argued that the

58 6. DATABASE OPERATIONS

Links code is in fact less understandable and more complicated than the SQL equiv-
alent, invalidating the attraction to the language for its simplicity in interacting with
databases.

Not only is the Links code perhaps more difficult to construct and understand, it once
again results in wildly sub-optimal SQL queries. As opposed to the single query re-
quired for the PHP approach, the Links compiler generates the following:

• One query to return the entire milestone table.
Filtered in Links for correct projectid.

• For each matching milestone, one query to return the entire starred table.
Filtered in Links for matching userid, itemtype and itemid.

• For each matching starred milestone, one query to return the entire user table.
Filtered in Links for matching userid.

As a result, if the application has 5 milestones, two of which are starred, a total of 8
full-table queries are executed. In terms of efficiency, this scenario is far worse than
that described in Section 6.7.1 above; full-table queries are not only generated for
milestones that are overdue or upcoming, but for all milestones in the entire project
in order to determine their starred status. All comparisons and joins are performed
in Links rather than the DBMS, nullifying the extensive optimisations and advanced
search techniques that are employed in these systems.

6.8 Further Inefficient SQL Generation

In addition to the above examples, whilst developing linksCollab it became apparent
that particular coding styles and methods resulted in compilation to full table queries,
rather than using optimised JOINs. This section outlines these discoveries and com-
ments on the problems associated with them.

6.8.1 Links code inside database return values

Including Links code inside the list of fields returned from a database for construct
causes the compiler to create non-joined queries (example in Code Listing 6.18). From
a programming perspective, it is intuitive to include code for operations, such as con-
verting an integer to a string or concatenating two values, within the for loop, rather
than perform a further iteration through the list after the retrieval operation has com-
pleted to apply these functions. Developers that do not examine the resultant SQL,
essentially those that Links is targetted towards, will be unaware that this practice pro-
duces inefficient SQL queries.

6.9. SUMMARY 59

Rather than produce poorly optimised queries, it would be beneficial if the compiler
ignored such functions when creating the SQL statements, and optimised them as nor-
mal. Once these are created, a subsequent iteration over the result list could apply the
necessary functions required by the developer.

Code Listing 6.18. Links for construct including code in return values

var milestones =
for (var ms <−− tb milestone)

for (var user <−− tb user)
where (ms.completed == 0 && ms.creator == user.userid)

[(ms.milestoneid, ms.summary, stringToDate(ms.date end), user.firstname ++ user.lastname)]

6.8.2 Changeable values in where clauses

It is sometimes necessary to surround database for constructs with loops that change
the parameter in a where clause. An example would be the retrieval of milestones that
have particular identifiers (Code Listing 6.19). Rather than compiling to the “WHERE
val IN (x,y,z)” syntax, or using multiple OR separated conditions in the where
clause, the compiler generates SQL statements as it traverses the outer loop, resulting
in one query per iteration. Generated and optimal SQL queries for this example can be
found in Appendix D.

Code Listing 6.19. Links code to retrieve milestones with particular identifiers

var list = [1,3,5];
var result = for (var id <− list)

for (var milestone <−− tb milestone)
where (milestone.milestoneid == id)

for (var user <−− tb user)
where (user.userid == milestone.creator)

[(milestoneid=milestone.milestoneid,summary=milestone.summary,
enddate=milestone.date end,priority=milestone.priority,
creatorid=milestone.creator,creatorfirst=user.firstname,
creatorlast=user.lastname)];

6.9 Summary

It is evident that Links integrated database operations does have its advantages. Basic
data retrieval, insertion and deletion operations are straightforward to implement. The
protection from SQL injection attacks should not be overlooked, and strongly typed
values from the database assists in reducing potential programmer errors, aiding de-
bugging and maintenance. Basic users benefit from the optimisation for some nested

60 6. DATABASE OPERATIONS

loop constructs, and the lack of the requirement to learn SQL is an attractive quality
for new web programmers.

However the database functionality in Links does have a number of limitations that
cause concern for web developers. Database query efficiency is of the utmost impor-
tance in large-scale applications, but the Links compiler fails to generate the optimal
SQL in several different scenarios. Static table typing results in unnecessary code for
update or insert operations, and control over the DBMS is limited, preventing use of the
highly refined optimisations or advanced features included in database management
systems. Whilst in some cases the Links code is easier to construct, the performance
benefits to be gained through manually writing the SQL statements far outweigh the
advantage of the Links simplicity.

7. Further Issues & Observations

Debugging & Error Messages

As with any development, numerous compiler error messages were encountered through-
out the process. These were not always clear, with some as succinct as “Unify Failure”
with no further information.

In some cases the error message referred to code that had not been changed, that is
positioned several hundred lines away from the actual error. This is due to the type in-
ference algorithm used in Links, and it can make debugging extremely time consuming
and frustrating if numerous changes have been made since the last successful compile.
Tracking down which change caused the error in these cases was often troublesome,
taking significantly longer than I would expect for most debugging operations.

Built-in Libraries and Types

Links has limited data types available to developers, Date being one such type that
caused significant setback. First, the lack of a Date type meant that DateTime fields
in the database had to be inserted and extracted as strings. This necessitated creat-
ing functions for parsing these strings, converting them to a usable custom DateTime
string-indexed tuple in Links. Second, performing date comparisons or manipulations
became an arduous task, as custom dateAdd and dateDiff functions had to be cre-
ated, working with a tuple of digits rather than an easily malleable integer or strict
Date type.

This was alleviated with the introduction of the intToDate, dateToInt and serverTime
functions, however by this point I had already completed my own implementations of
date manipulation functions using the string-indexed tuples.

Distribution of Code

During development of linksCollab I used include files to avoid duplication of code,
and separate functionality for ease of maintenance. However Links does not officially
support includes – they are implemented through the use of a pre-processor script that
simply concatenates the files specified to create one large file to be parsed. The diffi-
culty with this approach is the Links compiler requires all top-level var and typename
declarations to be at the beginning of the file, otherwise it has difficulties with cyclic
dependencies between functions, throwing “undefined function” errors. This made it

61

62 7. FURTHER ISSUES & OBSERVATIONS

difficult to fully separate independent features of the application, creating less manage-
able code and not allowing for related functions and variables to be grouped together.

XHTML Compliance

Links uses strongly typed XML within the code. This has the effect of ensuring that
opening and closing tags are correctly balanced, and element attributes are correctly
defined, both aiding compliance with XHTML standards. The creation of well formed,
valid XHTML has both design and accessibility benefits, as compliant sites are easier
for client browsers to interpret and render correctly.

However Links does not currently support the DOCTYPE or XML namespace definitions
required to fully comply with the latest standards (W3C, 2007). Functionality allowing
these to be added must be incorporated within Links to enable standardised web sites
to be created.

8. Conclusion & Further Work

Links aims to overcome the traditional problems of web development through imple-
menting the three tiers of web programming in a single language. It fully integrates
both client-side functions and database operations into the primary application lan-
guage, lowering the barriers for new web developers and offering increased type safety,
security, and state management for online applications.

Being a functional language, Links is inherently different from the languages used
in common web development such as PHP, Ruby and ASP.Net. It allows the use of
higher-order functions to ease abstraction and increase flexibility, as well as continua-
tions to maintain client-side state, effortlessly introduce mid-process input pages, and
promote easy to follow “direct style” coding. PHP struggles to compete with Links
in this respect: the imperative execution style does not lend itself to interruption and
resumption, and the alternative solutions are overly complex, unscalable and difficult
to maintain.

The form abstraction in Links through the use of Formlets was found to have significant
benefits over the PHP approach to form handling. It dramatically reduces the developer
effort required for validating and re-displaying forms, whilst the modular approach
increases reusability of code and allows for complex stacked validation procedures.
Formlets were found to be easy to use, and sufficiently powerful and flexible to fulfil
requirements for the forms in linksCollab. The Links method does present some lim-
itations for error message placement and hooking into submission processes, however
the major benefits of type safety and far outweigh these minor inconveniences.

The approach to database integration taken by Links has many advantages over the
PHP equivalent. It simplifies the use of database systems by not requiring knowl-
edge of SQL, and the strong typing overcomes the impedance mismatch problem, pre-
venting simple programming mistakes and reducing requirements for type casting and
conversion. However, generated SQL statements for anything beyond a simple query
are far from optimal, giving rise to concerns over efficiency. Links also places tight
restrictions on the interactions with DBMSs, preventing exploitation of their full func-
tionality and extensive optimisations.

Links has strong potential to become a popular language for web development. It
simplifies the learning curve for new entrants to web programming, and alleviates
many of the common problems associated with the three tier architecture. Formlets are
a very attractive feature that is sure to draw developer attention, however refinement
and optimisation of the database integration is of primary importance to allow the
language to be used efficiently for even small applications.

63

64 8. CONCLUSION & FURTHER WORK

Further Work

This study focussed on the “Web 1.0” features of Links – static form submission and
database interaction, with all page changes being invoked through an HTTP request-
response. With Web 2.0 applications becoming increasingly popular, an examination
of Links client-side functions in relation to an existing AJAX framework would prove
an interesting study.

It would also be beneficial to carry out performance testing of the database operations
in both languages, particularly for large volumes of data. This would demonstrate the
extent to which the numerous full-table SQL statements generated by Links impact on
page rendering times, and allow for a quantitative assessment of how these compare to
the hand-written equivalents used in PHP.

Acronyms

AJAX Asynchronous Javascript and XML

API Application Programming Interface

ASP Active Server Pages

DOM Document Object Model

DBMS Database Management System

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

OO Object Oriented

OOP Object Oriented Programming

PHP PHP Hypertext Preprocessor

SaaS Software as a Service

SQL Structured Query Language

URL Universal Resource Locator

XHR XmlHttpRequest

XHTML eXtensible Hypertext Markup Language

XML eXtensible Markup Language

XSS Cross-site Scripting

65

66 8. CONCLUSION & FURTHER WORK

Bibliography

Achievo (2008). Flexible Web-based Project Management.
URL http://www.achievo.org

activeCollab (2008). Project Management and Collaboration Tool.
URL http://www.activecollab.com/

Aula, A., Jhaveri, N., & Käki, M. (2005). Information Search and Re-access Strategies
of Experienced Web Users. Proceedings of the 14th International Conference on
World Wide Web, (pp. 583–592).

Basecamp (2008). Get Projects Done.
URL http://www.basecamphq.com

Cooper, E., Lindley, S., Wadler, P., & Yallop, J. (2006). Links: Web Programming
Without Tiers. Proceedings of the 5th International Symposium on Formal Methods
for Components and Objects.

dotProject (2008). Open Source Project Management Tool.
URL http://www.dotproject.net

Ext JS (2006). AJAX Javascript Library.
URL http://extjs.com/

Floyd, I., Jones, C., Rathi, D., & Twidale, M. (2007). Web Mash-ups and Patchwork
Prototyping: User-driven Technological Innovation with Web 2.0 and Open Source
Software. Proceedings of the 40th Hawaii International Conference on System Sci-
ences.

Garret, J. (2005). Ajax: A new approach to web applications.
URL http://www.adaptivepath.com/ideas/essays/archives/000385.php

Graunke, P. T., Krishnamurthi, S., Hoeven, S. V. D., & Felleisen, M. (2001). Program-
ming the Web with High-Level Programming Languages. Proceedings of the 10th
European Symposium on Programming Languages and Systems, (pp. 122–136).

Helft, M. (2007). A Google Package Challenges Microsoft.

Hoover, N. J. (2007). At Procter & Gamble, The Good And Bad Of Web 2.0 Tools.
Information Week, 15.

IETF (1997). HTTP State Management Mechanism. Online.
URL http://www.ietf.org/rfc/rfc2109.txt

IETF (1999). Hypertext Transfer Protocol – HTTP/1.1. Online.
URL http://www.ietf.org/rfc/rfc2616.txt

67

68 BIBLIOGRAPHY

Joshi, S. (2005). SQL Injection Attack and Defense.
URL http://www.securitydocs.com/library/3587

Kaae, R. (2007). PHP Continuation. Online.
URL http://kodepage.blogspot.com/2007/01/php-continuation.html

Krishnamurthi, S. (2003). The CONTINUE Server (or, How I Administered PADL
2002 and 2003). PADL ’03: Proceedings of the 5th International Symposium on
Practical Aspects of Declarative Languages, (pp. 2–16).

Michaelson, G. (1989). An Introduction To Functional Programming Through
Llambda Calculus. Wokingham, England: Addison-Wesley.

Microsoft (2007). Asp.net state management overview. Online.
URL http://support.microsoft.com/kb/307598

MooTools (2007). AJAX Javascript Library.
URL http://www.mootools.net/

Morgan, D. (2006). Web Application Security – SQL Injection Attacks. Network
Security, 2006(4), 4–5.

O’Brien, C. (2007). Salesforce Nears 1 Million Milestone. ElectricNews.Net.

O’Reilly, T. (2005). What Is Web 2.0 – Design Patterns and Business Models for the
Next Generation of Software.
URL http://www.oreillynet.com/pub/a/oreilly/tim/
news/2005/09/30/what-is-web-20.html

Palsberg, J., & Jay, C. B. (1998). The Essence of the Visitor Pattern. Proceedings of the
22nd International Computer Software and Applications Conference, (pp. 9–15).

Paulson, L. D. (2005). Building Rich Web Applications with Ajax. Computer, 38(10),
14–17.

PHP Manual (2007). Session handling functions. Online.
URL http://uk3.php.net/session

PHProjekt (2008). An Open Source Groupware Suite.
URL http://www.phprojekt.com

Quan, D., Huynh, D., Karger, D. R., & Miller, R. (2003). User Interface Continuations.
Proceedings of the 16th Annual ACM Symposium on User interface Software and
Technology, (pp. 145–148).

Queinnec, C. (2003). Inverting Back the Inversion of Control or, Continuations Versus
Page-centric Programming. SIGPLAN Notices, 38(2), 57–64.
URL http://citeseer.ist.psu.edu/449022.html

BIBLIOGRAPHY 69

Thiemann, P. (2005). An embedded domain-specific language for type-safe server-side
web scripting. ACM Trans. Inter. Tech., 5(1), 1–46.

Visa Inc. (2006). Visa USA, U.S. Chamber of Commerce Release Top Five Causes of
Data Compromises.
URL http://corporate.visa.com/md/nr/press642.jsp

Vlado (2006). Learning lessons from Lisp, or Patterns and Languages in PHP. Online.
URL http://dikini.net/20.01.2006/learning lessons from
lisp or patterns and languages in php

W3C (1999). Web Content Accessibility Guidelines 1.0. Online.
URL http://www.w3.org/TR/WCAG10/

W3C (2007). XHTML Basic 1.1. Online.
URL http://www.w3.org/TR/2007/CR-xhtml-basic-20070713/

Weinreich, H., Obendorf, H., Herder, E., & Mayer, M. (2006). Off the Beaten Tracks:
Exploring Three Aspects of Web Navigation. Proceedings of the 15th International
Conference on World Wide Web, (pp. 133–142).

Zara, O. (2008). WWW SQL Designer.
URL http://ondras.zarovi.cz/sql/

70 APPENDIX .

Appendix A: Specification

1. Introduction

LinksCollab is a web-based project management application written in the LINKS pro-
gramming language. It provides the ability for multiple users to manage the progress
of a number of projects. This is achieved through the creation of milestones, the as-
sociated tasks to achieve these milestones, and engagement in discussions to resolve
issues or canvass ideas.

2. Glossary

The following terms are used throughout this document:

• Starred Object – A milestone, task or discussion that a user has marked as im-
portant or interesting by clicking a star symbol.

3. Entities

Description of the various entities within the application and their interactions

3.1 Project

Encapsulates milestones, tasks and discussions to a particular goal or outcome.

Projects are created, edited and deleted by Administrators.
Projects are accessed by Users.

3.2 Milestone

Milestones define actions that must be accomplished, usually by a certain date, to
proceed with or complete a project. Milestones can have Tasklists assigned to them,
defining a list of tasks that must be accomplished to complete the milestone.

Milestones are created, edited and deleted by users.

71

72 APPENDIX .

3.3 Tasklist

A list of related tasks. Tasklists can optionally be attached to a milestone, defining a
list of tasks that must be completed to achieve a particular milestone.

Tasklists are created, edited and deleted by Users.

3.4 Task

Tasks are actions that must be completed to progress with a project. They are generally
smaller and quicker to complete than project milestones. Related tasks can be grouped
and organised into Tasklists.

Tasks are created, edited, opened, closed and deleted by Users.

3.5 Discussion

Discussions can be likened to a simple forum whereby users can create new Discus-
sions and others can submit replies.

Discussions are created by Users.
Discussions are opened, closed and deleted by Administrators.

3.6 User

A standard user of the system, likely a member the owning company or group. These
users have one or more assigned projects to which they can contribute by creating tasks
and milestones and participating in discussions.

3.7 Administrator

A user with a higher level of privileges. Able to create and delete other users as well
as modify settings related to the application and all projects.

73

4. Functional Requirements

4.1 Access

• Access to the application shall be controlled by a username and password com-
bination unique to each user.

• A “forgotten password” system shall enable users to have a new password emailed
to them on request.

4.2 Main Overview

Upon logging into the system the user shall be presented with the following informa-
tion:

• List of active projects to which the user is currently assigned (assigned projects)

• Recent updates to Milestones, Tasks or Discussions in assigned projects

• Upcoming events – Milestones and tasks with a due date in less than 7 days

• Today’s events – Milestones and tasks with a due date of today

• Late events – Milestones and tasks with a due date prior to the current date

• List of Starred objects – list of Milestones, Tasks or Discussions that are starred

4.3 Project Overview

Upon selecting a particular project the user shall be presented with the following in-
formation:

• Project details: title, description and leader

• Current project progress (% of tasks completed)

• Upcoming milestones and tasks within this project (due date in less than 7 days)

• Recent updates to milestones, tasks or discussions within this project

• Assigned tasks – list of tasks within this project that are assigned to the user

From this view the user shall also have access to the Milestones, Tasklists and Discus-
sions pages relating to this project.

74 APPENDIX .

4.4 Milestones

The milestones section allows a user to add, edit and delete milestones for a particular
project. The following is displayed on the milestones page:

• Link to create new Milestone

• List of active Milestones

• List of completed Milestones (marked as “completed” by a user)

The following information is displayed for each milestone

• Summary

• Priority

• Starred (yes/no)

• Days until/since End Date

The following options are available for each milestone:

• Edit this milestone

• Delete this milestone

• (If milestone is Active) – Mark as Completed

• (If milestone is Completed) – Mark as Active

• Toggle Starred status

4.5 Milestone Details

The following details are available when creating a new milestone or editing an exist-
ing milestone

• Summary – brief description of the milestone, eg. “Create Client Proposal”
(required)

• Start Date – the commencement date for work towards this milestone (required)

• End Date – the deadline for completion of this milestone (required)

• Priority – priority level for this milestone (Highest, High, Normal, Low, Lowest
– defaults to Normal)

• Assignees – list of users (0 or more) that are assigned to this milestone

75

4.6 Tasklists

The following is displayed on the Tasklists page:

• Link to create new Tasklist

• List of Active Tasklists

• List of Completed Tasklists (Tasklists are defined as completed when all tasks
within them are marked as closed)

The following information is displayed for each Tasklist

• Summary

• Starred (yes/no)

• Number of tasks within this Tasklist that are open

• Number of tasks within this Tasklist that are closed

The following options are available for each Tasklist:

• View this Tasklist

• Toggle Starred status

4.7 Create New Tasklist

The following details are available when creating a new Tasklist

• Summary – brief description of the Tasklist, eg. “Tasks to Create Client Pro-
posal” (required)

• Description – a more detailed description of the Tasklist

• Milestone – the Milestone to which this Tasklist is attached

Once the Tasklist has been created the user shall be directed to the Edit Tasklist page
to create new tasks.

4.8 Edit Existing Tasklist

When editing an existing Tasklist, the above details are available to edit as per a new
Tasklist. In addtion there shall be the option to Create, Edit and delete member tasks,
as per the Tasks section below.

76 APPENDIX .

4.9 Tasks

Upon viewing a Tasklist the following information is displayed:

• Link to Create New Task

• Link to Edit Tasklist

• Link to Close Tasklist (marks all member tasks as Completed)

• List of Active Tasks

• List of Closed Tasks

The following information is displayed for each Task:

• Summary

• Starred (yes/no)

• Priority

• Days until/since Due Date

The following options are available for each Task:

• Delete this Task

• Edit this Task

• Toggle Starred status

4.10 Task Details

The following details are available when creating a new Task or editing an existing
Task

• Summary – brief description of the Task, eg. “Clarify system details with client”
(required)

• Due Date – the deadline for completion of this Task

• Priority – priority level for this Task (Highest, High, Normal, Low, Lowest –
defaults to Normal)

• Assignees – list of users (0 or more) that are assigned to this Task

4.11 Discussions

The following shall be displayed on the Discussions page:

77

• Link to Create New Discussion

• List of Open Discussions (sorted by Last Active Timestamp)

• List of Closed Discussion

The following information is displayed for each Discussion:

• Subject

• Starred (yes/no)

• Last Active Timestamp

The following options are available for each Discussion:

• View Discussion

• (Administrator Only) – Close Discussion

• (Administrator Only, Closed Discussions Only) – Re-open Discussion

• (Administrator Only) – Delete Discussion

4.12 View Discussion

Upon selecting a Discussion to view, the user shall be shown the discussion in chrono-
logical order with the oldest replies at the top.

For each reply within the Discussion the following information shall be displayed:

• Username

• Created timestamp – when this reply was submitted

• Reply body – the actual textual content of the reply

The user shall be able to submit a reply to the current Discussion.

4.13 Administration

This section is available to Administrators only

The Administration section contains the following options:

• User Management – Create, Edit and Delete users.

• Project Management – Create Edit and Delete projects. Assign users to projects.

• Application Settings – Alter application-wide settings

78 APPENDIX .

4.14 User Management

This section is available to Administrators only

The user management section allows administrators to create, edit and delete users
from the application.

The following is displayed on the User Management page:

• Link to create new User

• List of current users

The following information is displayed for each User

• Username

• Real Name

• Email Address

• Permission Level

The following options are available for each User:

• Edit this User

• Delete this User

4.15 User Details

The following details are available when creating a new User or editing an existing
User

• Username – a unique username that is used to login to the application (required)

• Full Name – the user’s full name (required)

• Contact Number – a contact number for the user

• Email Address – e-mail address for the user

• Permission Level – (Administrator, Normal, Read-Only – defaults to Normal)
(required)

4.16 Project Management

This section is available to Administrators only

79

The user management section allows administrators to create, edit and delete users
from the application.

The following is displayed on the Project Management page:

• Link to create new Project

• List of current active projects

• List of current completed projects

The following information is displayed for each Project

• Project Name

• Date Started

• (Active projects only) – Completion Status (X of Y tasks completed)

• (Completed projects only) – Date Completed

The following options are available for each Project:

• Edit this Project

• Delete this Project

4.17 Project Details

The following details are available when creating a new Project or editing an existing
Project

• Name – the name for the project

• Overview – an overview of the project

• Leader – the user who is responsible for this project (default: current user)

• Assigned Users – a list of users that have access to this project

80 APPENDIX .

Appendix B: Date Formlet

Code Listing B.1. Links code to create re-usable Date formlet

typename Date = (day : Int, month : Int, year : Int);
isValidDate validation function removed for brevity
Checks day/month/year fall within required bounds
sig dateFormlet : () −> Formlet(Date)
fun dateFormlet () {

uncheckedDateFormlet() `satisfies`
(isValidDate `errorMsg`

fun () { "Invalid date. Must be in format dd/mm/yyyy" })
}
sig uncheckedDateFormlet : () −> Formlet(Date)
fun uncheckedDateFormlet () {

formlet
<#>
{ inputInteger −> day value }
{ inputInteger −> month value }
{ inputInteger −> year value }
</#>

yields
(day = day value,

month = month value,
year = year value)

}
sig inputInteger : () −> Formlet(Integer)
fun inputInteger () {

formlet
<#>{ input `satisfies` (isInt `errorMsg`

fun () { "Not Integer" }) −> value }</#>
yields

stringToInt(value)
}

81

82 APPENDIX .

Appendix C: Form Processing in PHP

Code Listing C.1. PHP code to create an “Add Milestone” form

<?
$errors = array();
// check if form submitted
if (isset($ POST['submit'])) {

// begin validation checking
if (!eregi("[a-zA-Z0-9_- .]+",$summary)) {

$errors['summary'] = "Must contain valid data";
}
$date field = array ("start_date_day","start_date_month","start_date_year",

"end_date_day","end_date_month","end_date_year");
foreach ($date field as $field) {

if (!eregi("[0-9]{1,2}",$ POST[$field])) {
$errors[$field] = "Invalid";
}
}
$start date = strtotime($ POST['start_date_year'] . "-" .

$ POST['start_date_month'] . "-" .
$ POST['start_date_day']);

$end date = strtotime($ POST['end_date_year'] . "-" .
$ POST['end_date_month'] . "-" .
$ POST['end_date_day']);

// strtotime returns false if date is invalid
if (!$start date) {

$errors['start_date'] = "Not a valid date";
}
if (!$end date) {

$errors['end_date'] = "Not a valid date";
}
if ($start date > 0 && $end date > 0 && $start date > $end date) {

$errors['datepair'] = "Start date must be before end date";
}
if ($ POST['start_date_day'] > 31eregi("[a-zA-Z0-9_- .]+",$ POST['summary'])) {

$errors['summary'] = "Must contain valid data";
}
if (count($errors) == 0) {

// validation passed so do something here
// prevent processing beyond this point
exit;
}
}
// initialise variables to submitted values or defaults
// to avoid ”variable not set” warnings
$summary = isset($ POST['summary']) ? makeSafe($ POST['summary']) : "";
$start date day = isset($ POST['start_date_day']) ? makeSafe($ POST['start_date_day']) : "";
$start date month = isset($ POST['start_date_month']) ? makeSafe($ POST['start_date_month']) : "";

83

84 APPENDIX .

$start date year = isset($ POST['start_date_year']) ? makeSafe($ POST['start_date_year']) : "";
$end date day = isset($ POST['end_date_day']) ? makeSafe($ POST['end_date_day']) : "";
$end date month = isset($ POST['end_date_month']) ? makeSafe($ POST['end_date_month']) : "";
$end date year = isset($ POST['end_date_year']) ? makeSafe($ POST['end_date_year']) : "";
$priority = isset($ POST['priority']) ? makeSafe($ POST['priority']) : "0";

// function to return error message if it's set
function showError ($field) {

if (isset($errors[$field])) {
return "$errors[$field]";
}
else {

return "";
}
}
// function to make input safe for outputting (avoid XSS attacks)
function makeSafe ($value) {

return htmlentities($value, ENT QUOTES, "UTF-8");
}
?>
// header HTML skipped for brevity
<form method="post" action="action.file">

<label>Summary: <input type="text" name="summary" value="<?= $summary ?>" />
</label>
<?= showError("summary") ?>
<label>Start Date:

<input type="text" name="start_date_day" value="<?= $start date day ?>" />
<?= showError("start_date_day") ?>
<input type="text" name="start_date_month" value="<?= $start date month ?>" />
<?= showError("start_date_month") ?>
<input type="text" name="start_date_year" value="<?= $start date year ?>" />
<?= showError("start_date_year") ?>

</label>
<?= showError("start_date") ?>
<label>End Date:

<input type="text" name="end_date_day" value="<?= $end date day ?>" />
<?= showError("end_date_day") ?>
<input type="text" name="end_date_month" value="<?= $end date month ?>" />
<?= showError("end_date_month") ?>
<input type="text" name="end_date_year" value="<?= $end date year ?>" />
<?= showError("end_date_year") ?>

</label>
<?= showError("end_date") ?>
<?= showError("date_pair") ?>
<label>Priority:

<select name="priority">
<option value="0" <? if ($priority == 0) echo 'checked="checked"' ?>>

Highest</option>
<option value="1" <? if ($priority == 1) echo 'checked="checked"' ?>>

High</option>
<option value="2" <? if ($priority == 2) echo 'checked="checked"' ?>>

85

Normal</option>
<option value="3" <? if ($priority == 3) echo 'checked="checked"' ?>>

Low</option>
<option value="4" <? if ($priority == 4) echo 'checked="checked"' ?>>

Lowest</option>
</select>
<?= showError("priority") ?>

</label>
<button type="submit" name="submit" value="submit">Add Milestone</button>

</form>
// footer HTML skipped for brevity

86 APPENDIX .

Appendix D: Generated SQL
Statements

Code Listing D.1. Generated SQL statements for returning Starred Milestones

[1] SELECT ms.summary, ms.projectid, ms.priority, ms.milestoneid,
ms.date start start, ms.date end end, ms.creator, ms.completed

FROM milestone
[2] SELECT star.userid, star.itemtype, star.itemid FROM starred
[3] SELECT star.userid, star.itemtype, star.itemid FROM starred
[4] SELECT user.username, user.userid, user.projectid, user.password,

user.lastname, user.firstname, user.email
FROM user

[5] SELECT star.userid, star.itemtype, star.itemid FROM starred
[6] SELECT user.username, user.userid, user.projectid, user.password,

user.lastname, user.firstname, user.email
FROM user

Code Listing D.2. Generated SQL statements generated for returning milestones with
particular identifiers

[1] SELECT ms.summary, ms.priority, ms.milestoneid, ms.date end,
user.lastname, ms.creator, user.firstname

FROM milestone, user
WHERE (ms.milestoneid = 1)

AND (user.userid = ms.creator)
[2] SELECT ms.summary, ms.priority, ms.milestoneid, ms.date end,

user.lastname, ms.creator, user.firstname
FROM milestone, user
WHERE (ms.milestoneid = 3)

AND (user.userid = ms.creator)
[3] SELECT ms.summary, ms.priority, ms.milestoneid, ms.date end,

user.lastname, ms.creator, user.firstname
FROM milestone, user
WHERE (ms.milestoneid = 5)

AND (user.userid = ms.creator)

Code Listing D.3. Optimal SQL statements for selecting milestones with particular
identifiers

SELECT ms.summary, ms.priority, ms.milestoneid, ms.date end,
user.lastname, ms.creator, user.firstname

FROM milestone, user
WHERE (ms.milestoneid IN (1,3,5))

AND (user.userid = ms.creator)
−− or the alternative option

87

88 APPENDIX .

SELECT ms.summary, ms.priority, ms.milestoneid, ms.date end,
user.lastname, ms.creator, user.firstname

FROM milestone, user
WHERE ((ms.milestoneid = 1)

OR (ms.milestoneid = 3)
OR (ms.milestoneid = 5))

AND (user.userid = ms.creator)

