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Abstract
Provenance, or information about the origin or derivation of data,
is important for assessing the trustworthiness of data and identify-
ing and correcting mistakes. Most prior implementations of data
provenance have involved heavyweight modifications to database
systems and little attention has been paid to how the provenance
data can be used outside such a system. We present extensions to the
Links programming language that build on its support for language-
integrated query to support provenance queries by rewriting and
normalizing monadic comprehensions and extending the type sys-
tem to distinguish provenance metadata from normal data. The main
contribution of this paper is to show that the two most common
forms of provenance can be implemented efficiently and used safely
as a programming language feature with no changes to the database
system.

1. Introduction
A Web application typically spans at least three different com-
putational models: the server-side program, browser-side HTML
or JavaScript, and SQL to execute on the database. Coordinating
these layers is a considerable challenge. Recently, programming
languages such as Links (Cooper et al. 2007) and Ur/Web (Chli-
pala 2015) have pioneered a cross-tier approach to Web program-
ming. The programmer writes a single program, which can be type-
checked and analyzed in its own right, but parts of it are executed to
run efficiently on the multi-tier Web architecture by translation to
HTML, JavaScript and SQL. Cross-tier Web programming builds
on language-integrated query (Meijer et al. 2006), a technique for
safely embedding database queries into programming languages.

When something goes wrong in a database-backed Web applica-
tion, understanding what has gone wrong and how to fix it is also a
challenge. Often, the database is the primary “state” of the program,
and problems arise when this state becomes inconsistent or contains
erroneous data. For example, Figure 1 shows Links code for query-
ing data from a (fictional) Scottish tourism database, with the result
shown in Figure 2. Suppose one of the phone numbers is incorrect:
we might want to know where in the source database to find the
source of this incorrect data, so that we can correct it. Alternatively,
suppose we are curious why some data is produced: for example,
the result shows EdinTours twice. If we were not expecting these
results, e.g. because we believe that EdinTours is a bus tour agency

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

PPDP ’16 September 05–07, 2016, Edinburgh, United Kingdom
Copyright c© 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4148-6/16/09. . . $15.00
DOI: http://dx.doi.org/10.1145/2967973.2968604

var agencies = table ”Agencies”
with (name:String, based in:String, phone:String)
from db;
var externalTours = table ”ExternalTours”
with (name:String, destination:String, type:String, price:Int)
from db;
var q1 = query {
for (a <-- agencies)
for (e <-- externalTours)
where (a.name == e.name && e.type == ”boat”)

[(name = e.name,
phone = a.phone)]

}

Figure 1. Links table declarations and example query
name phone

EdinTours 412 1200
EdinTours 412 1200
Burns’s 607 3000

Figure 2. Example query results

and does not offer boat tours, then we need to see additional input
data to understand why they were produced.

Automatic techniques for producing such explanations, often
called provenance, have been explored extensively in the database
literature (Cui et al. 2000; Buneman et al. 2001; Green et al. 2007;
Glavic and Alonso 2009b). Neither conventional nor cross-tier
Web programming currently provides direct support for provenance.
A number of implementation strategies for efficiently computing
provenance for query results have been explored, but no prior work
considers the interaction of provenance with clients of the database.

We propose language-integrated provenance, a new approach to
implementing provenance that leverages the benefits of language-
integrated query. In this paper, we present two instances of this
approach, one which computes where-provenance showing where in
the underlying database a result was copied from, and another which
computes lineage showing all of the parts of the underlying database
that were needed to compute part of the result. Both techniques
are implemented by a straightforward source-to-source translation
which adjusts the types of query expressions to incorporate prove-
nance information and changes the query behavior to generate and
propagate this information. Our approach is implemented in Links,
and benefits from its strong support for rewriting queries to efficient
SQL equivalents, but the underlying ideas may be applicable to other
languages that support language-integrated query, such as F# (Syme
2006), SML# (Ohori and Ueno 2011), or Ur/Web (Chlipala 2015).

Most prior implementations of provenance involve changes
to relational database systems and extensions to the SQL query
language, departing from the SQL standard that relational databases
implement. To date, none of these proposals have been incorporated



into the SQL standard or supported by mainstream database systems.
If such extensions are adopted in the future, however, we can simply
generate queries that use these extensions in Links. In some of these
systems, enabling provenance in a query changes the result type
of the query (adding an unpredictable number of columns). Our
approach is the first (to the best of our knowledge) to provide type-
system support that makes sure that the extra information provided
by language-integrated provenance queries is used safely by client.

Our approach builds on Links’s support for queries that construct
nested collections (Cheney et al. 2014c). This capability is crucial
for lineage, because the lineage of an output record is a set of
relevant input records. Moreover, our provenance translations can be
used with queries that construct nested results. Our approach is also
distinctive in allowing fine-grained control over where-provenance.
In particular, the programmer can decide whether to enable or
disable where-provenance tracking for individual input table fields,
and whether to keep or discard provenance for each result field.

We present two simple extensions to Links to support where-
provenance and lineage, and give (provably type-preserving) trans-
lations from both extensions to plain Links. We have implemented
both approaches and experimentally validated them using a synthetic
benchmark. Provenance typically slows down query evaluation be-
cause more data is manipulated. For where-provenance, our experi-
ments indicate a constant factor overhead of 1.5–2.8. For lineage,
the slowdown is between 1.25 and 7.55, in part because evaluating
lineage queries usually requires manipulating more data. Although
we have not yet compared our approach directly to other systems,
these results appear to be in a reasonable range: for example, the
Perm system (Glavic and Alonso 2009b) reports slowdowns of 3–30
for a comparable form of lineage.

This paper significantly extends an earlier workshop paper (Fehren-
bach and Cheney 2015). The workshop version only outlined our
initial design for where-provenance in Links; this paper presents the
fully-implemented system, extends it to support lineage, and gives a
detailed experimental evaluation of both extensions.

2. Overview
In this section we give an overview of our approach, first covering
necessary background on Links and language-integrated query based
on comprehensions, and then showing how provenance can be
supported by query rewriting in this framework. We will use a
running example of a simple tours database, with some example
data shown in Figure 5.

2.1 Links background
We first review a subset of the Links programming language that
includes all of the features relevant to our work; we omit some
features (such as effect typing, polymorphism, and concurrency)
that are not required for the rest of the paper. We also omit detailed
discussion of the operational semantics of Links, which is presented
in previous work (Lindley and Cheney 2012).

Figure 3 presents a simplified subset of Links syntax, sufficient
for explaining the provenance translations in this paper. Types
include base types O (such as integers, booleans and strings), table
types table(li: Ai), function types A -> B, record types (li: Ai),
and collection types [A]. In Links, collection types are treated as
multisets inside database queries (reflecting SQL’s default multiset
semantics), but represented as lists during ordinary execution.

Expressions include standard constructs such as constants, vari-
ables, record construction and field projection, conditionals, func-
tions and application. We freely use pair types (A,B) and pair
syntax (M,N) and projections M.1, M.2 etc., which are easily
definable using records. Constants c can be functions such as integer
addition, equality tests, etc.; their types are collected in a signature
Σ. In Links we write var x = M ;N for binding a variable x to M

Base types O ::= Int | Bool | String
Rows R ::= · | R, l : A

Table types T ::= table(R)

Types A,B ::= O | T | A -> B | (R) | [A]

Contexts Γ ::= · | Γ, x : A

Expressions L,M,N ::= c | x | (li = Mi) | N.l

| fun f(xi) N | N(Mi)

| var x = M ;N | if (L) {M} else {N}
| query {N} | table n with (li : Oi)

| [] | [N ] | N ++ M | empty(M)

| for (x <- L) M | where(M) N

| for (x <-- L) M | insert L valuesM

| update (x <- L) where M setN

| delete (x <- L) where M

Figure 3. Syntax of a subset of Links.

in a N . The semantics of the Links constructs discussed so far is
call-by-value. The expression query {M} introduces a query block,
whose content is not evaluated in the usual call-by-value fashion
but instead first normalized to a form equivalent to an SQL query,
and then submitted to the database server. The resulting table (or
tables, in the case of a nested query result) are then translated into a
Links value. Queries can be constructed using the expressions for
the empty collection [], singleton collection [M ], and concatenation
of collections M ++ N . In addition, the comprehension expres-
sions for(x <-- M) N and for(x <- M) L allow us to form queries
involving iteration over a collection. The difference between the two
expressions is that for(x <-- M) expects M to be a table reference,
whereas for(x <- M) expects M to be a collection. The expression
where (M) N is essentially equivalent to if (M) {N} else {[]},
and is intended for use in filtering query results. The expression
empty (M) tests whether the collection produced by M is empty.
These comprehension syntax constructs can also be used outside a
query block, but they are not guaranteed to be translated to queries in
that case. The insert, delete and update expressions perform up-
dates on database tables; they are implemented by direct translation
to the analogous SQL update operations.

The type system (again a simplification of the full system)
is illustrated in Figure 4. Many rules are standard; we assume a
typing signature Σ mapping constants and primitive operations to
their types. The rule for query {M} refers to an auxiliary jugment
A :: QType that essentially checks that A is a valid query result
type, meaning that it is constructed using base types and collection
or record type constructors only:

O :: QType

[Ai :: QType]ni=1

(li : Ai)
n
i=1 :: QType

A :: QType

[A] :: QType

Similarly, the R :: BaseRow judgment ensures that the types used
in a row are all base types:

· :: BaseRow
R :: BaseRow

R, l : O :: BaseRow

The full Links type system also checks that the body M uses only
features available on the database (and only calls functions that
satisfy the same restriction). The rules for other query operations are
straightforward, and similar to those for monadic comprehensions
in other systems. Finally, the rules for updates (insert, update, and
delete) are also mildly simplified; in the full system, the conditions
and update expressions are required to be database-executable
operations. Lindley and Cheney (2012) presents a more complete



CONST
Σ(c) = A

Γ ` c : A

VAR
x : A ∈ Γ

Γ ` x : A

RECORD
Γ `Mi : Ai

Γ ` (li = Mi)
n
i=1 : (li : Ai)

PROJECTION
Γ `M : (li : Ai)

n
i=1

Γ `M .lk : Ak

FUN
Γ, [xi : Ai]

n
i=1 `M : B

Γ ` fun (xi|ni=1){M} : (Ai|ni=1) -> B

APP
Γ `M : (Ai|ni=1) -> B Γ ` Ni : Ai (i ∈ {1, . . . , n})

Γ `M(Ni|ni=1) : B

VAR
Γ `M : A Γ, x : A ` N : B

Γ ` var x = M ;N : B

QUERY
Γ `M : [A] A :: QType

Γ ` query {M} : [A]

EMPTY
Γ `M : [A]

Γ ` empty(M) : Bool

TABLE
R :: BaseRow

Γ ` table n with (R) : table(R)

EMPTY-LIST

Γ ` [] : [A]

LIST
Γ `M : A

Γ ` [M ] : [A]

CONCAT
Γ `M : [A] Γ ` N : [A]

Γ `M ++ N : [A]

FOR-LIST
Γ ` L : [A] Γ, x : A `M : [B]

Γ ` for (x <- L) M : [B]

WHERE
Γ `M : Bool Γ ` N : [B]

Γ ` where (M) N : [B]

FOR-TABLE
Γ ` L : table(R) Γ, x : (R) `M : [B]

Γ ` for (x <-- L) M : [B]

INSERT
Γ ` L : table(R) Γ `M : [(R)]

Γ ` insert L valuesM : ()

UPDATE
Γ ` L : table(R) Γ, x : (R) `M : Bool Γ, x : (R) ` N : [(R)]

Γ ` update L where M setN : ()

DELETE
Γ ` L : table(R) Γ, x : (R) `M : Bool

Γ ` delete L where M : ()

Figure 4. Typing rules for Links.

formalization of Links’s type system that soundly characterizes the
intended run-time behavior.

The core language of Links we are using is a simplification
of the full language in several respects. Links includes a number
of features (e.g. recursive datatypes, XML literals, client/server
annotations, and concurrency features) that are important parts of
its Web programming capabilities but not needed to explain our
contribution. Links also uses a type-and-effect system to determine
whether the code inside a query block is translatable to SQL, and
which functions can be called safely from query blocks. We use
a simplified version of Links’s type system that leaves out these
effects and does not deal with polymorphism. Our implementation
does handle these features, with some limitations discussed later.

2.2 Language-integrated query
Writing programs that interact with databases can be tricky, be-
cause of mismatches between the models of computation and data
structures used in databases and those used in conventional program-
ming languages. The default solution (employed by JDBC and other
typical database interface libraries) is for the programmer to write
queries or other database commands as uninterpreted strings in the
host language, and these are sent to the database to be executed.
This means that the types and names of fields in the query cannot be
checked at compile time and any errors will only be discovered as a
result of a run-time crash or exception. More insidiously, failure to
adequately sanitize user-provided parameters in queries opens the
door to SQL injection attacks (Shar and Tan 2013).

Language-integrated query is a technique for embedding queries
into the host programming language so that their types can be
checked statically and parameters are automatically sanitized. Mi-
crosoft’s LINQ library, which provides language-integrated query
for .NET languages, is a popular feature of C# and F#. Broadly,
there are two common approaches to language-integrated query.
The first approach, which we call SQL embedding, adds specialized
constructs resembling SQL queries to the host language, so that they
can be typechecked and handled correctly by the program. This is
the approach taken in C# (Meijer et al. 2006), SML# (Ohori and
Ueno 2011), and Ur/Web (Chlipala 2015). The second approach,
which we call comprehension, uses monadic comprehensions or

Agencies
(oid) name based in phone

1 EdinTours Edinburgh 412 1200
2 Burns’s Glasgow 607 3000

ExternalTours
(oid) name destination type price in £

3 EdinTours Edinburgh bus 20
4 EdinTours Loch Ness bus 50
5 EdinTours Loch Ness boat 200
6 EdinTours Firth of Forth boat 50
7 Burns’s Islay boat 100
8 Burns’s Mallaig train 40

Figure 5. Example input data

related constructs of the host language, and generates queries from
such expressions. The comprehension approach builds on founda-
tions for querying databases using comprehensions developed by
Buneman et al. (1995), and has been adopted in languages such as
F# (Syme 2006) and Links (Cooper et al. 2007) as well as libraries
such as Database-Supported Haskell (Giorgidze et al. 2011).

The advantage of the comprehension approach is that it provides
a higher level of abstraction for programmers to write queries,
without sacrificing performance. This advantage is critical to our
work, so we will explain it in some detail. For example, the query
shown in Figure 1 illustrates Links comprehension syntax. It asks
for the names and phone numbers of all agencies having an external
tour of type ”boat”. The keyword for performs a comprehension
over a table (or other collection), and the where keyword imposes a
Boolean condition filtering the results. The result of each iteration
of the comprehension is a singleton collection containing the record
(name = e.name,phone = a.phone).

Monadic comprehensions do not always correspond exactly to
SQL queries, but under certain reasonable assumptions, it is possible
to normalize these comprehension expressions to a form that is easily
translatable to SQL. For example, the following query

var q1’ = query {



for (e <-- externalTours)
where (e.type == ”boat”)
for (a <-- agencies)
where (a.name == e.name)
[(name = e.name, phone = a.phone)]

}

does not directly correspond to a SQL query due to the alternation
of for and where operations; nevertheless, query normalization gen-
erates a single equivalent SQL query in which the where conditions
are both pushed into the SQL query’s WHERE clause:

SELECT e.name AS name, a.phone AS phone
FROM ExternalTours e, Agencies a

WHERE e.type = ’boat’ AND a.name = e.name

Normalization frees the programmer to write queries in more natural
ways, rather than having to fit the query into a pre-defined template
expected by SQL.

However, this freedom can also lead to problems, for example
if the programmer writes a query-like expression that contains
an operation, such as print or regular expression matching, that
cannot be performed on the database. In early versions of Links, this
could lead to unpredictable performance, because queries would
unexpectedly be executed on the server instead of inside the database.
The current version uses a type-and-effect system (as described by
Cooper (2009) and Lindley and Cheney (2012)) to track which parts
of the program must be executed in the host language and which
parts may be executed on the database. Using the query keyword
above forces the typechecker to check that the code inside the braces
will successfully execute on the database.

2.3 Higher-order functions and nested query results
Although comprehension-based language-integrated query may
seem (at first glance) to be little more than a notational convenience,
it has since been extended to provide even greater flexibility to
programmers without sacrificing performance.

The original results on normalization (due to Wong (1996))
handle queries over flat input tables and producing flat result
tables, and did not allow calling user-defined functions inside
queries. Subsequent work has shown how to support higher-order
functions (Cooper 2009; Grust and Ulrich 2013) and queries that
construct nested collections (Cheney et al. 2014c). For example,
we can use functions to factor the previous query into reusable
components, provided the functions are nonrecursive and only
perform operations that are allowed in the database.

fun matchingAgencies(name) {
for (a <-- agencies)
where (a.name == name)

[(name = e.name, phone = a.phone)]
}
var q1’’ = query {
for (e <-- externalTours)
where (e.type == ”boat”)

matchingAgencies(e.name)
}

Cooper’s results show that these queries still normalize to SQL-
equivalent queries, and this algorithm is implemented in Links.
Similarly, we can write queries whose result type is an arbitrary
combination of record and collection types, not just a flat collection
of records of base types as supported by SQL:

var q2 = query {
for (a <-- agencies)

[(name = a.name,
tours = for (e <-- externalTours)

where (e.name == a.name)
[(dest = e.destination, type = e.type)]

}

This query produces records whose second tours component
is itself a collection — that is, the query result is of the type
[(name:String,[(dest:String, type:Type)])] which contains a nested
occurrence of the collection type constructor []. SQL does not di-
rectly support queries producing such nested results — it requires
flat inputs and query results.

Our previous work on query shredding (Cheney et al. 2014c)
gives an algorithm that evaluates queries with nested results effi-
ciently by translation to SQL. Given a query whose return type
contains n occurrences of the collection type constructor, query
shredding generates n SQL queries that can be evaluated on the
database, and constructs the nested result from the resulting tables.
This is typically much more efficient than loading the database data
into memory and evaluating the query there. Links supports query
shredding and we will use it in this paper to implement lineage.

Both capabilities, higher-order functions and nested query results,
are essential building blocks for our approach to provenance. In what
follows, we will use these techniques without further explanation
of their implementation. The details are covered in previous pa-
pers (Cooper 2009; Lindley and Cheney 2012; Cheney et al. 2014c),
but are not needed to understand our approach.

2.4 Where-provenance and lineage
As explained in the introduction, provenance tracking has been
explored extensively for queries in the database community. We are
now in a position to explain how these provenance techniques can
be implemented on top of language-integrated query in Links. We
review two of the most common forms of provenance, and illustrate
our approach using examples; the rest of the paper will use similar
examples to illustrate our implementation approach.

Where-provenance is information about where information in
the query result “came from” (or was copied from) in the input.
Buneman et al. (2001) introduced this idea; our approach is based
on a later presentation for the nested relational calculus by Buneman
et al. (2008). A common reason for asking for where-provenance
is to identify the source of incorrect (or surprising) data in a query
result. For example, if a phone number in the result of the example
query is incorrect, we might ask for its where-provenance. In our
system, this involves modifying the input table declaration and query
as follows:

var agencies = table ”Agencies”
with (name:String, based in:String, phone:String)
where phone prov default

The annotation phone prov default says to assign phone numbers the
“default” provenance annotation of the form (Agencies, phone, i)
where i is the object id (oid) of the corresponding row. The field
value will be of type Prov(String); the data value can be accessed
using the keyword data and the provenance can be accessed using
the keyword prov, as follows:

var q1’’’ = query {
for (a <-- agencies)
for (e <-- externalTours)
where (a.name == e.name && e.type == ”boat”)

[(name = e.name,
phone = data a.phone, p phone = prov a.phone)]

}

The result of this query is as follows:

name phone p phone

EdinTours 412 1200 (Agencies,phone,1)
EdinTours 412 1200 (Agencies,phone,1)
Burns’s 607 3000 (Agencies,phone,2)

Why-provenance is information that explains “why” a result
was produced. In a database query setting, this is usually taken to



mean a justification or witness to the query result, that is, a subset
of the input records that includes all of the data needed to generate
the result record. Actually, several related forms of why-provenance
have been studied (Cui et al. 2000; Buneman et al. 2001; Cheney
et al. 2009; Glavic et al. 2013), however, many of these only make
sense for set-valued collections, whereas Links currently supports
multiset semantics. In this paper, we focus on a simple form of why-
provenance called lineage which is applicable to either semantics.

Intuitively, the lineage of a record r in the result of a query
is a subset L of the records in the underlying database db that
“justifies” or “witnesses” the fact that r is in the result of Q on
db. That is, running Q on the lineage L should produce a result
containing r, i.e. r ∈ Q(L). Obviously, this property can be satisfied
by many subsets of the input database, including the whole database
db, and this is part of the reason why there exist several different
definitions of why-provenance (for example, to require minimality).
A common approach is to define the lineage to be the set of all input
database records accessed in the process of producing r; this is a
safe overapproximation to the minimal lineage, and usually is much
smaller than the whole database.

We identify records in input database tables using pairs such as
(AgencyTours,2) where the first component is the table name and the
second is the row id, and the lineage of an element of a collection is
just a collection of such pairs. (Again, this has the benefit that we
can use a single type for references to data in multiple input tables.)
Using this representation, the lineage for q1 is as follows:

name phone lineage

EdinTours 412 1200 [(Agencies,1),(ExternalTours,5)]
EdinTours 412 1200 [(Agencies,1),(ExternalTours,6)]
Burns’s 607 3000 [(Agencies,2),(ExternalTours,7)]

Links’s capabilities for normalizing and efficiently evaluating
queries provide the key ingredients needed for computing prove-
nance. For both where-provenance and lineage, we can translate
programs using the extensions described above, in a way that both
preserves types and ensures that the resulting query expressions can
be converted to SQL queries. In the rest of this paper, we give the
details of these translations and present an experimental evaluation
showing that its performance is reasonable.

3. Provenance translations
In this section we present the key technical contributions of this
paper. We present two extensions of Links: LinksW, which supports
where-provenance in queries, and LinksL, which supports lineage
in queries. We show that both extensions can be implemented by a
type-preserving source-to-source translation to plain Links.

3.1 Where-Provenance
LinksW extends Links with support for where-provenance. The
syntax shown in Figure 3 is extended as follows:

O ::= · · · | Prov(O)

L,M,N ::= · · · | data M | prov M | table(R) where S

S ::= · | S, l prov s

s ::= default |M
We introduce the type constructor Prov(O), where O is a type
argument of base type. We treat Prov(O) itself as a base type,
so that it can be used as part of a table type. (This is needed for
initializing provenance as explained below.) Values of type Prov(O)
are annotated with where-provenance, where the annotation consists
of a triple (R, f, i) where R is the source table name, f is the field
name, and i is the row identifier. For example, 42 #(”QA”, ”a”, 23)
represents the answer 42, of type Prov(Int) which was copied from

PROV
Γ `M : Prov(A)

Γ ` prov M : (String, String, Int)

DATA
Γ `M : Prov(A)

Γ ` data M : A

TABLE
R :: BaseRow Γ ` S : ProvSpec(R)

Γ ` table n with (R) where S : table(R . S)

Γ ` · : ProvSpec(R)

Γ ` S : ProvSpec(R)

Γ ` S, l prov default : ProvSpec(R)

Γ ` S : ProvSpec(R) Γ `M : (R) -> (String,String, Int)

Γ ` S, l prov M : ProvSpec(R)

R . · = R (R, l : O) . (S, l prov s) = (R . S), l : Prov(O)

Figure 6. Additional typing rules for LinksW.

WJOK = O

WJA -> BK = WJAK -> WJBK
WJ(li : Ai)

n
i=1K = (li : WJAiK)ni=1

WJ[A]K = [WJAK]

WJProv(A)K = (data : WJAK, prov : (String,String, Int))

WJtable(R)K = (table(‖R‖), () -> [WJ(R)K])

‖O‖ = O

‖Prov(A)‖ = ‖A‖
‖li : Ai|ni=1‖ = li : ‖Ai‖|ni=1

Figure 7. Type translation and erasure.

row 23, column a, of table QA. We print the provenance of a value
as a comment (following #) to indicate that it can not be directly
entered into LinksW. The type Prov(O) is abstract, without a visible
constructor, so only the LinksW runtime can construct values of
provenance type.

There are two operations on values with provenance type:
data N extracts the data value of some expression N ; similarly,
prov N extracts its argument’s where-provenance triple.

In addition, we extend the syntax of table expressions to allow
a list of provenance initialization specifications l prov s. A specifi-
cation s is either the keyword default or an expression M which
is expected to be of type (li : Oi) -> (String,String, Int). We
have three kinds of columns: (1) regular columns with labels lr
where r is in some set of indicesR. For these columns we do not
compute provenance. (2) Columns with default where-provenance
have labels ld where d ∈ D. For these columns we compute prove-
nance derived from their location in the database given by table
name, column name, and the row’s oid. (3) Columns with external
where-provenance have labels le where e ∈ E . For these columns
we obtain provenance by calling a user-provided function with the
row as input. Such user-defined provenance calculation functions
have to be pure and database-executable, but they are otherwise free
to do whatever they want. The envisioned use is fetching existing
provenance metadata that is stored separately from the actual data.

The typing rules for the new constructs of LinksW are shown
in Figure 6. These rules employ an auxiliary judgment Γ ` S :
ProvSpec(R), meaning that in context Γ, the provenance specifica-
tion S is valid with respect to record type R. As suggested by the
typing rule, the prov keyword extracts the provenance from a value
of type Prov(A), and data extracts its data, the A-value. The most
complex rule is that for the table construct. The rule for typing table
references also uses an auxiliary operation R . S that defines the



WJcK = c

WJxK = x

WJ(li = Mi)
n
i=1K = (li = WJMiK)ni=1

WJN.lK = WJNK.l
WJfun(xi|ni=1) {M}K = fun(xi|ni=1) {WJMK}

WJM(Ni)K = WJMK(WJNiK)
WJvar x = M ;NK = var x = WJMK;WJNK

WJquery {M}K = query {WJMK}
WJ[]K = []

WJ[M ]K = [WJMK]
WJM ++ NK = WJMK ++ WJNK

WJif (L) {M} else {N}K = if (WJLK) {WJMK} else {WJNK}
WJempty (M)K = empty (WJMK)

WJfor (x <- L) MK = for (x <- WJLK) WJMK
WJwhere(M) NK = where(WJMK) WJNK

WJfor (x <-- L) MK = for (x <- WJLK.2()) WJMK
WJdata MK = WJMK.data

WJprovMK = WJMK.prov

WJinsert L values MK = insertWJLK.1 valuesWJMK
WJupdate (x <- L) where M setNK = update (x <- WJLK.1) where WJMK setWJNK

WJdelete (x <- L) where MK = delete (x <- WJLK.1) where WJMK

WJtable n with(R)where SK = (table n with (R), fun(){for(x <-- table n with (R))[(R .nx S)]})

· .nx · = · (R, l : Prov(O)) .nx (S, l prov default) = (R .nx S), l = (data = x.l, prov = (n, ld, x.oid))

(R, l : O) .nx · = (R .x ·), l = x.l (R, l : Prov(O)) .nx (S, l prov M) = (R .nx S), l = (data = x.l, prov = WJMK(x))

Figure 8. Translation of LinksW to Links, and auxiliary operation R .nx S

type of the provenance view of a table whose fields are describedby
R and whose provenance specification is S. As for ordinary tables,
we check that the fields are of base type.

We give the semantics of LinksW by a translation to Links. The
syntactic translation of types WJ−K is shown in Figure 7. We write
WJΓK for the obvious extension of the type translation to contexts.
The implementation extends the Links parser and type checker,
and desugars the LinksW AST to a Links AST after type checking,
reusing the backend mostly unchanged. The expression translation
function is also written WJ−K and is shown in Figure 8.

Values of type Prov(O) are represented at runtime in Links
as ordinary records with type (data: O,prov: (String, String, Int)).
Thus, the keywords data and prov translate to projections to the
respective fields.

We translate table declarations to pairs. The first component is
a simple table declaration where all columns have their primitive
underlying non-provenance type. We will use the underlying table
declaration for insert, update, and delete operations. The second
component is essentially a delayed query that calculates where-
provenance for the entire table. We compute provenance for each
record by iterating over the table. For every record of the input table,
we construct a new record with the same fields as the table. For
every column with provenance, the field’s value is a record with
data and prov fields. The data field is just the value. The translation
of table references also uses an auxiliary operation R .nx S which,
given a row type R, a table name n, a variable x and a provenance
specification S, constructs a record in which each field contains data
from x along with the specified provenance (if any). We wrap the
iteration in an anonymous function to delay execution: otherwise,
the provenance-annotated table would be constructed in memory
when the table reference is first evaluated. We will eventually apply
this function in a query, and the Links query normalizer will inline
the provenance annotations and normalize them along with the rest
of the query.

We translate table comprehensions to comprehensions over the
second component of a translated table declaration. Since that
component is a function, we have to apply it to a (unit) argument.

For example, recall the example query q1’’ from Section 2. The
table declaration translates as follows:

var agencies = (table ”Agencies”
with (name:String, based in:String, phone:String),

fun () { for (t <-- table ”Agencies”
with (name:String, based in:String, phone:String))

[(name:t.name, based in:t.based in,
phone=(data=t.phone,prov=(”Agencies”,”phone”,t.oid)))] })

The translation of the externalTours table reference is similar, but
simpler, since it has no prov annotations. The query translates to

query {
for (a <-- agencies.2())
for (e <-- externalTours.2())
where (a.name == e.name && e.type == ”boat”)

[(name = e.name,
phone = a.phone.data, p prov = a.phone.prov)]

}

Moreover, after inlining the adjusted definitions of agencies and
externalTours and normalizing, the provenance computations in the
delayed query agencies.2 are also inlined, resulting in a single SQL
query.

The (intended) correctness property of the where-provenance
translation is that it preserves well-formedness, as follows:

THEOREM 1. For every LinksW term M :

Γ `LinksW M : A⇒WJΓK `Links WJMK : WJAK

The proof is straightforward by induction on the structure of
derivations; the only interesting cases are those for comprehensions
and updates, since they illustrate the need for both the plain table
reference and its provenance view.

3.2 Lineage
LinksL adds the lineage keyword to Links. The syntax is extended
as follows:

L,M,N ::= · · · | lineage{M}
The expression lineage {M} is similar to query {M}, in that M
must be an expression that can be executed on the database (that is,
terminating and side-effect free; this is checked by Links’s effect
type system just as for query {M}). However, instead of executing
the query normally, lineage {M} also computes lineage for each
record in the result. If M has type [A] (which must be an appropriate
query result type) then the type of the result of lineage {M} will
be LJAK, where LJ−K is a type translation that adjusts the types of
collections [A] to allow for lineage, as shown in Figure 10.

The syntactic translation of LinksL types is shown in Figure 9.
We write DJΓK and LJΓK for the obvious extensions of these
translations to contexts. The translation of LinksL expressions to



DJOK = O

DJA -> BK = (DJAK -> DJBK,LJAK -> LJBK)
DJ(li : Ai)

n
i=1K = (li : DJAiK)ni=1

DJ[A]K = [DJAK]

DJtable(R)K = (table(R), () -> LJ[(R)]K)
LJOK = O

LJA -> BK = LJAK -> LJBK
LJ(li : Ai)

n
i=1K = (li : LJAiK)ni=1

LJ[A]K = [(data : LJAK, prov : (String, Int))]

LJtable(R)K = LJ[(R)]K

Figure 9. Doubling and lineage translations

LINEAGE
Γ `M : [A] A :: QType

Γ ` lineage {M} : LJ[A]K

Figure 10. Additional typing rule for LinksL

Links is shown in Figure 11. It operates in two modes: D and L.
We translate ordinary Links programs using the translation DJ−K.
When we reach a lineage block, we switch to using the LJ−K
translation. LJ[M ]K provides initial lineage for list literals. Their
lineage is simply empty. Table comprehension is the most interesting
case. We translate a table iteration for (x <-- L) M to a nested list
comprehension. The outer comprehension binds y to the results of
the lineage-computing view of L. The inner comprehension binds a
fresh variable z, iterating over LJMK—the original comprehension
body M transformed using L. The original comprehension body
M is defined in terms of x, which is not bound in the transformed
comprehension. We therefore replace every occurrence of x in LJeK
by y.data. In the body of the nested comprehension we thus have y,
referring to the table row annotated with lineage, and z, referring
to the result of the original comprehension’s body, also annotated
with lineage. As the result of our transformed comprehension, we
return the plain data part of z as our data, and the combined lineage
annotations of y and z as our provenance. (Handling where-clauses
is straightforward, as shown in Figure 11.)

One subtlety here is that lineage blocks need not be closed, and
so may refer to variables that were defined (and will be bound to
values at run time) outside of the lineage block. This could cause
problems: for example, if we bind x to a collection [1, 2, 3] outside a
lineage block and refer to it in a comprehension inside such a block
then uses of x will expect the collection elements to be records such
as (data = 1, prov = L) rather than plain numbers. Therefore,
such variables need to be adjusted so that they will have appropriate
structure to be used within a lineage block. The auxiliary type-
indexed function d2lJAK accomplishes this by mapping a value of
type DJAK to one of type LJAK. We define L∗J−K as a function that
applies LJ−K to its argument and substitutes all free variables x : A
with d2lJAK(x).

The DJ−K translation also has to account for functions that are
defined outside lineage blocks but may be called either outside
or inside a lineage block. To support this, the case for functions
in the DJ−K translation creates a pair, whose first component is
the recursive DJ−K translation of the function, and whose second
component uses the L∗J−K translation to create a version of the
function callable from within a lineage block. (We use L∗J−K
because functions also need not be closed.) Function calls outside
lineage blocks are translated to project out the first component;
function calls inside such blocks are translated to project out the

second component (this is actually accomplished via the A -> B
case of d2l.)

Finally, notice that the DJ−K translation maps table types and
table references to pairs. This is similar to the WJ−K translation, so
we do not explain it in further detail; the main difference is that we
just use the oid field to assign default provenance to all rows.

For example, if we wrap the query from Figure 1 in a lineage
block it will be rewritten to this:

for (y a <- agencies.2())
for (z a <- for (y e <- externalTours.2())

for (z e <- [(data = (name = y a.data.name,
phone = y a.data.phone),

prov = [])])
where (y a.data.name == y e.data.name

&& y e.data.type == ”boat”)
[(data = z e.data,

prov = y e.prov ++ z e.prov)])
[(data = z a.data, prov = y a.prov ++ z a.prov)]

Once agencies and externalTours are inlined, Links’s built-in normal-
ization algorithm simplifies this query to:

for (y a <- table ”Agencies” with ...)
for (y e <- table ”ExternalTours” with ...)
where (y a.data.name == y e.data.name

&& y e.data.type == ”boat”)
[(data = (name = y a.data.name,phone = y a.data.phone),

prov = [(”Agencies”, y a.oid), (”ExternalTours”,y e.oid)])]

The (again, intended) correctness property for the translation
from LinksL to Links is stated as follows:

THEOREM 2. Let M be given such that Γ `LinksL M : A. Then:

1. LJΓK `Links LJMK : LJAK
2. DJΓK `Links L∗JMK : LJAK
3. DJΓK `Links DJMK : DJAK

The proof of each part is straightforward by induction (notice that
DJ−K depends on LJΓK but not vice versa). The main complication
is the use of l2s in L∗J−K, and the cases for functions and lineage
which need to use the second induction hypothesis. In the case of
lineage, we use the fact that DJAK = DJLJAKK, which follows
because A :: QType so cannot involve table or function types.

4. Experimental Evaluation
We implemented two variants of Links with language-integrated
provenance, LinksW and LinksL, featuring our extensions for where-
provenance and lineage, respectively. Both variants build on Links
with query shredding as described by Cheney et al. (2014c); they
used queries against a simple test database schema (see Figure 12)
that models an organization with departments, employees and
external contacts. We change some of their benchmarks to return
where-provenance and provenance and compare against the same
queries without provenance.

Unlike Cheney et al. (2014c) our database does not include an
additional id field, instead we use PostgreSQL’s OIDs, which are
used for identification of rows in where-provenance and lineage. We
populate the databases at varying sizes using randomly generated
data in the same way Cheney et al. (2014c) describe it: “We vary
the number of departments in the organisation from 4 to 4096 (by
powers of 2). Each department has on average 100 employees
and each employee has 0–2 tasks.” The largest database, with
4096 departments, is 142 MB on disk when exported by pg dump
to a SQL file (excluding OIDs). We create additional indices on
tasks(employee), tasks(task), employees(dept), and contacts(dept).

All tests were performed on an otherwise idle desktop system
with a quad-core CPU with 3.2 GHz, 8 GB RAM, and a 500 GB



LJcK = c

LJxK = x

LJ(li = Mi)
n
i=1K = (li = LJMiK)ni=1

LJN.lK = LJNK.l
LJfun(xi|ni=1) {M}K = (fun(xi|ni=1) {LJMK})

LJM(Ni|ni=1)K = LJMK(LJNiK|ni=1)

LJvar x = M ;NK = var x = LJMK;LJNK
LJquery {M}K = query {LJMK}

LJ[]K = []

LJ[M ]K = [(data : LJMK, prov : [])]

LJM ++ NK = LJMK ++ LJNK

LJif (L) {M} else {N}K = if (LJLK) {LJMK} else {LJNK}
LJquery {M}K = query {LJMK}
LJempty (M)K = empty (LJMK)

LJfor (x <- L) MK = for (y <- LJLK)
for (z <- LJMK[x 7→ y.data])

[(data = z.data, prov = y.prov ++ z.prov)]

LJwhere(M) NK = where(LJMK) (LJNK)
LJfor (x <-- L) MK = for (y <- LJLK)

for (z <- LJMK[x 7→ y.data])
[(data = z.data, prov = y.prov ++ z.prov)]

LJlineage {M}K = query {LJMK}

DJcK = c

DJxK = x

DJ(li = Mi)
n
i=1K = (li = DJMiK)ni=1

DJN.lK = DJNK.l
DJfun(xi|ni=1) {M}K = (fun(xi|ni=1) {DJMK},

L∗Jfun(xi|ni=1) {M}K)
DJM(Ni|ni=1)K = DJMK.1(DJNiKni=1)

DJvar x = M ;NK = var x = DJMK;DJNK
DJ[]K = []

DJ[M ]K = [DJMK]

DJM ++ NK = DJMK ++ DJNK

DJif (L) {M} else {N}K = if (DJLK) {DJMK} else {DJNK}
DJquery {M}K = query {DJMK}
DJempty (M)K = empty (DJMK)

DJfor (x <- L) MK = for (x <- DJLK) DJMK
DJwhere(M) NK = where(DJMK) DJNK

DJfor (x <-- L) MK = for (x <- DJLK.1) DJMK
DJinsert L valuesMK = insert DJLK.1 values DJMK

DJupdate (x <- L) where M set DJNK = update (x <- DJLK.1) where DJMK setNK
DJdelete (x <- L) where MK = delete (x <- DJLK.1) where DJMK

DJlineage {M}K = query {L∗JMK}

LJtable n with(R)K = for(x <-- table n with (R))[(data = x, prov = [(table = n, row = x.oid)])]

DJtable n with(R)K = (table n with (R), fun(){LJtable n with(R)K})

L∗JMK = L∗JMK[xi 7→ d2lJAiK(xi)|ni=1] where x1 : A1, . . . , xn : An are the free variables of M
d2lJAK : DJAK→ LJAK

d2lJOK(x) = x

d2lJA -> BK(f) = f.2

d2lJ(l1 : A1, . . . , ln : An)K(x) = (l1 : d2lJA1K(x.l1), . . . , ln : d2lJAnK(x.ln))

d2lJ[A]K(y) = for(x <- y)[(data = d2lJAK(x), prov = [])]

d2lJtable(R)K(t) = t.2()

Figure 11. Translation of LinksL to Links: type translation, outer translation, and inner translation and term translation

HDD. The system ran Linux (kernel 4.5.0) and we used PostgreSQL
9.4.2 as the database engine. Links and its variants LinksW and
LinksL are interpreters written in OCaml, which were compiled to
native code using OCaml 4.02.3.

4.1 Where-provenance
To be usable in practice, where-provenance should not have unrea-
sonable runtime overhead. We compare queries without any where-
provenance against queries that calculate where-provenance on some
of the result and queries that calculate full where-provenance wher-
ever possible. This should give us an idea of the overhead of where-
provenance on typical queries, which are somewhere in between
full and no provenance.

The nature of where-provenance suggests two hypotheses:
First, we expect the asymptotic complexity of where-provenance-
annotated queries to be the same as that of regular queries. Second,
since every single piece of data is annotated with a triple, we expect
the runtime of a fully where-provenance-annotated query to be
at most four times the runtime of an unannotated query just for
handling more data.

We only benchmark default where-provenance, that is table
name, column name, and the database-generated OID for row

identification. External provenance is computed by user-defined
database-executable functions and can thus be arbitrarily expensive.

We use the queries with nested results from Cheney et al. (2014c)
and use them unchanged for comparison with the two variants with
varying amounts of where-provenance.

For full where-provenance we change the table declarations to
add provenance to every field, except the OID. This changes the
types, so we have to adapt the queries and some of the helper func-
tions. Figure 13 shows the benchmark queries with full provenance.
Note that for example query Q2 maps the data keyword over the em-
ployees tasks before comparing the tasks against ”abstract”. Query
Q6 returns the outliers in terms of salary and their tasks, concate-
nated with the clients with a fake task ”buy”. Since the fake task is
not a database value it cannot have where-provenance. LinksW type
system prevents us from pretending it does. Thus, the list of tasks
has type [String], not [Prov(String)].

The queries with some where-provenance are derived from the
queries with full provenance. Query Q1 drops provenance from
the contacts’ fields. Q2 returns data and provenance separately. It
does not actually return less information, it is just less type-safe. Q3
drops provenance from the employee. Q4 returns the employees’
provenance only, and drops the actual data. Q5 does not return



table departments with (oid: Int, name: String)
table employees with (oid: Int, dept: String,

name: String, salary: Int)
table tasks with (oid: Int, employee: String, task: String)
table contacts with (oid: Int, dept: String,

name: String, client: Bool)

Figure 12. Benchmark database schema, c.f. Cheney et al. (2014c).
# Q1 : [(contacts: [(”client”: Prov(Bool), name: Prov(String))], ...
for (d <-- departments)

[(contacts = contactsOfDept(d),
employees = employeesOfDept(d),
name = d.name)]

# Q2 : [(d: Prov(String))]
for (d <- q1())
where (all(d.employees, fun (e) {

contains(map(fun (x) { data x }, e.tasks), ”abstract”) }))
[(d = d.name)]

# Q3 : [(b: [Prov(String)], e: Prov(String))]
for (e <-- employees)

[(b = tasksOfEmp(e), e = e.name)]

# Q4 : [(dpt:Prov(String), emps:[Prov(String)])]
for (d <-- departments)

[(dpt = (d.name),
emps = for (e <-- employees)

where ((data d.name) == (data e.dept))
[(e.name)])]

# Q5 : [(a: Prov(String), b: [(name: Prov(String), ...
for (t <-- tasks)

[(a = t.task, b = employeesByTask(t))]

# Q6 : [(d: Prov(String), p: [(name: Prov(String), tasks: [String])])]
for (x <- q1())

[(d = x.name,
p = get(outliers(x.employees),

fun (y) { map(fun (z) { data z }, y.tasks) }) ++
get(clients(x.contacts), fun (y) { [”buy”] }))]

Figure 13. “allprov” benchmark queries used in experiments

provenance on the employees fields. Q6 drops provenance on the
department. (These queries make use of some auxiliary functions
which are included in the appendix.)
Setup. We have three LinksW programs, one for each level of
where-provenance annotations. For each database size, we drop
all tables and load a dump from disk, starting with 4096. We
then run LinksW three times, once for each program in order
all, some, none. Each of the three programs performs and times
its queries 5 times in a row and reports the median runtime in
milliseconds. The programs measure runtime using the LinksW

built-in function serverTimeMilliseconds which in turn uses OCaml’s
Unix.gettimeofday.
Data. Figure 14 shows our experimental results. We have one plot
for every query, showing the database size on the x-axis and the
median runtime over five runs on the y-axis. Note that both axes are
logarithmic. Measurements of full where-provenance are in black
circles, no provenance are yellow triangles, some provenance is
blue squares. Based on test runs we had to exclude some results for
queries at larger database sizes because the queries returned results
that were too large for Links to construct as in-memory values.

The graph for query Q2 looks a bit odd. This seems to be due to
Q2 not actually returning any data for some database sizes, because
for some of the (randomly generated) instances there just are no
departments where all employees have the task ”abstract”.
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Figure 14. Where-provenance query runtimes.

Query median runtime∗ in ms overall slowdown
allprov someprov noprov (geom mean)

Q1 6068 3653 1763 2.26
Q2 60 60 60 1.52
Q3 8100 8064 4497 1.88
Q4 1502 1214 573 2.8
Q5 6778 3457 2832 1.85
Q6 17874 18092 16716 1.22

Figure 15. Median runtimes for largest dataset (Q1 at 512 depart-
ments, Q5 at 1024 departments, Q6 at 2048 departments, others
4096 departments) and geometric means of overall slowdowns

The table in Figure 15 lists all queries with their median run-
times with full, some, and no provenance. The time reported is in
milliseconds, for the largest database instance that both variants of a
query ran on. For most queries this is 4096; for Q1 it is 512, 1024
for Q5, and 2048 for Q6. Figure 15 also reports the slowdown of
full where-provenance versus no provenance as the geometric mean
over all database sizes, for each query. The slowdown ranges from
1.22 for query Q6 up to 2.8 for query Q4.
Interpretation. The graphs suggest that the asymptotic complexity
of all three variants is the same, confirming our hypothesis. This
was expected, anything else would have suggested a bug in our
implementation.

The multiplicative overhead seems to be larger for queries that
return more data. Notably, for query Q2, which returns no data at all
on some of our test database instances, the overhead is hardly visible.
The raw amount of data returned for the full where-provenance
queries is three to four times that of a plain query. Most strings are
short names and provenance adds two short strings and a number
for table, column, and row. The largest overhead is 2.8 for query
Q4, which exceeds our expectations due to just raw additional data
needing to be processed.



4.2 Lineage
We expect lineage to have different performance characteristics than
where-provenance. Unlike where-provenance, lineage is conceptu-
ally set valued. A query with few actual results could have huge
lineage, because lineage is combined for equal data. In practice, due
to Links using multiset semantics for queries, the amount of lin-
eage is bounded by the shape of the query. Thus, we expect lineage
queries to have the same asymptotic complexity as queries with-
out lineage. However, the lineage translation still replaces single
comprehensions by nested comprehensions that combine lineage.
We expect this to have a larger impact on performance than where-
provenance, where we only needed to trace more data through a
query.

Figure 16 lists the queries used in the lineage experiments. For
lineage, queries are wrapped in a lineage block. Our implementation
does not currently handle function calls in lineage blocks automat-
ically, so in our experiments we have manually written lineage-
enabled versions of the functions employeesByTask and tasksOfEmp,
whose bodies are wrapped in a lineage block. We reuse some of
the queries from the where-provenance experiments, namely Q3,
Q4, and Q5. Queries AQ6, Q6N, and Q7 are inspired by query Q6,
but not quite the same. Queries QF3 and QF4 are two of the flat
queries from Cheney et al. (2014c). Query QC4 computes pairs
of employees in the same department and their tasks in a “tagged
union”. Again, these queries employ some helper functions which
are included in an appendix.

We use a similar experimental setup to the one for where-
provenance. We only use databases up to 1024 departments, because
most of the queries are a lot more expensive. Query QC4 has
excessive runtime even for very small databases. Query Q7 ran
out of memory for larger databases. We excluded them from runs
on larger databases.
Data. Figure 17 shows our lineage experiment results. Again, we
have one plot for every query, showing the database size on the
x-axis and the median runtime over five runs on the y-axis. Both
axes are logarithmic. Measurements with lineage are in black circles,
no lineage is shown as yellow triangles.

The table in Figure 18 lists queries and their median runtimes
with and without lineage. The time reported is in milliseconds, for
the largest database instance that both variants of a query ran on.
For most queries this is 1024; for Q7 it is 128, 16 for QC4, and 512
for QF3. The table also reports the slowdown of lineage versus no
lineage as the geometric mean over all database sizes. (We exclude
database size 4 for the mean slowdown in QF4 which reported taking
0 ms for no lineage queries which would make the geometric mean
infinity.) The performance penalty for using lineage ranges from
query Q5 needing a quarter more time to query Q4 being more than
7 times slower than its counterpart.
Interpretation. Due to Links multiset semantics, we do not expect
lineage to cause an asymptotic complexity increase. The experiments
confirm this. Lineage is still somewhat expensive to compute, with
slowdowns ranging from 1.25 to more than 7 times slower. Further
investigation of the SQL queries generated by shredding is needed.

4.3 Threats to validity
Our test databases are only moderately sized. However, our result
sets are relatively large. Query Q1 for example returns the whole
database in a different shape. Links’ runtime representation of values
in general and database results in particular has a large memory
overhead. In practice, for large databases we should avoid holding
the whole result in memory. This should reduce the overhead (in
terms of memory) of provenance significantly. (It is not entirely
clear how to do this in the presence of nested results and thus query
shredding.) In general, it looks like the overhead of provenance
is dependent on the amount of data returned. It would be good to

typename Lin(a) = (data: a, prov: [(row: Int, ”table”: String)]);

# AQ6 : [Lin((department: String, outliers: [Lin((name: String, ...
for (d <- for (d <-- departments)

[(employees = for (e <-- employees)
where (d.name == e.dept)

[(name = e.name, salary = e.salary)],
name = d.name)])

[(department = d.name,
outliers = for (o <- d.employees)

where (o.salary > 1000000 || o.salary < 1000)
[o])]

# Q3 : [Lin((b: [Lin(String)]), e: String)]
for (e <-- employees) [(b = tasksOfEmp(e), e = e.name)]

# Q4 : [Lin((dpt: String, emps: [Lin(String)]))]
for (d <-- departments)

[(dpt = d.name,
emps = for (e <-- employees)

where (d.name == e.dept)
[(e.name)])]

# Q5 : [Lin((a: String, b: [Lin((name: String, salary: Int, ...
for (t <-- tasks) [(a = t.task, b = employeesByTask(t))]

# Q6N : [Lin((department: String, people:[Lin((name: String, ...
for (x <-- departments)

[(department = x.name,
people = (for (y <-- employees)

where (x.name == y.dept &&
(y.salary < 1000 || y.salary > 1000000))

[(name = y.name,
tasks = for (z <-- tasks)

where (z.employee == y.name)
[z.task])]) ++

(for (y <-- contacts)
where (x.name == y.dept && y.”client”)

[(name = y.dept, tasks = [”buy”])]))]

# Q7 : [Lin((department: String, employee: (name: String, ...
for (d <-- departments)
for (e <-- employees)
where (d.name == e.dept && e.salary > 1000000 || e.salary < 1000)

[(employee = (name = e.name, salary = e.salary),
department = d.name)]

# QC4 : [Lin((a: String, b: String, c: [Lin((doer: String, ...
for (x <-- employees)
for (y <-- employees)
where (x.dept == y.dept && x.name <> y.name)

[(a = x.name,
b = y.name,
c = (for (t <-- tasks)

where (x.name == t.employee)
[(doer = ”a”, task = t.task)]) ++

(for (t <-- tasks)
where (y.name == t.employee)

[(doer = ”b”, task = t.task)]))]

# QF3 : [Lin((String, String))]
for (e1 <-- employees)
for (e2 <-- employees)
where (e1.dept == e2.dept && e1.salary == e2.salary

&& e1.name <> e2.name)
[(e1.name, e2.name)]

# QF4 : [Lin(String)]
(for (t <-- tasks)
where (t.task == ”abstract”)

[t.employee]) ++
(for (e <-- employees)
where (e.salary > 50000)

[e.name])

Figure 16. Lineage queries used in experiments
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Figure 17. Lineage query runtimes.

Query median runtime in ms overall slowdown
lineage nolineage (geom mean)

AQ6 493 108 3.8
Q3 4234 969 3.76
Q4 1208 125 7.55
Q5 13662 11851 1.25
Q6N 15200 7872 2.38
Q7 16766 1283 4.17
QC4 13291 4021 1.53
QF3 22298 2412 6.71
QF4 682 73 6.49

Figure 18. Median runtimes at largest dataset (Q7 at 128 depart-
ments, QC4 at 16 departments, QF3 at 512 departments, others at
1024 departments) and geometric means of overall slowdowns

investigate this more thoroughly. Also, it could be advantageous to
represent provenance in a special way. In theory we could store the
relation and column name in a more compact way, for example.

One of the envisioned main use cases of provenance is debugging.
Typically a user would filter a query anyway to pin down a problem
and thus only look at a small number of results and thus also query
less provenance. Our experiments do not measure this scenario but
instead compute provenance for all query results eagerly. Thus, the
slowdown factors we showed represent worst case upper bounds
that may not be experienced in common usage patterns.

Our measurements do not include program rewriting time. How-
ever, this time is only dependent on the lexical size of the program
and is thus fairly small and, most importantly, independent of the
database size. Since Links is interpreted, it does not really make
sense to distinguish translation time from execution time, but both
the where-provenance translation and the lineage translation could
happen at compile time, leaving only slightly larger expressions to
be normalized at runtime.

5. Related Work
Buneman et al. (2001) gave the first definition of where-provenance
in the context of a semistructured data model. The DBNotes system
of Bhagwat et al. (2005) supported where-provenance via SQL query
extensions. DBNotes provides several kinds of where-provenance in
conjunctive SQL queries, implemented by translating SQL queries
to one or more provenance-propagating queries. Buneman et al.
(2008) proposed a where-provenance model for nested relational
calculus queries and updates, and proved expressiveness results.
They observed that where-provenance could be implemented by
translating and normalizing queries but did not implement this
idea; our approach to where-provenance in LinksW is directly
inspired by that idea and is (to the best of our knowledge) the
first implementation of it. One important difference is that we
explicitly manage where-provenance via the Prov type, and allow
the programmer to decide whether to track provenance for some,
all or no fields. Our approach also allows inspecting and comparing
the provenance annotations, which Buneman et al. (2008) did not
allow; nevertheless, our type system prevents the programmer from
forging or unintentionally discarding provenance. On the other hand,
our approach requires manual data and prov annotations because it
distinguishes between raw data and provenance-annotated data.

LinksL is inspired by prior work on lineage (Cui et al. 2000) and
why-provenance (Buneman et al. 2001). There have been several
implementations of lineage and why-provenance. Cui and Widom
implemented lineage in a prototype data warehousing system called
WHIPS. The Trio system of Benjelloun et al. (2008) also supported
lineage and used it for evaluating probabilistic queries; lineage was
implemented by defining customized versions of database operations
via user-defined functions, which are difficult for database systems
to optimize. Glavic and Alonso (2009b) introduced the Perm system,
which translated ordinary queries to queries that compute their own
lineage; they handled a larger sublanguage of SQL than previous
systems such as Trio, and subsequently Glavic and Alonso (2009a)
extended this approach to handle queries with nested subqueries
(e.g. SQL’s EXISTS, ALL or ANY operations). They implemented
these rewriting algorithms inside the database system and showed
performance improvements of up to 30 times relative to Trio. Our
approach instead shows that it is feasible to perform this rewriting
outside the database system and leverage the standard SQL interface
and underlying query optimization of relational databases.

Both LinksW and LinksL rely on the conservativity and query nor-
malization results that underly Links’s implementation of language-
integrated query, particularly Cooper’s work (2009) extending con-
servativity to queries involving higher-order functions, and previous
work by Cheney et al. (2014c) on “query shredding”, that is, evaluat-
ing queries with nested results efficiently by translation to equivalent
flat queries. There are alternative solutions to this problem that sup-
port larger subsets of SQL, such as Grust et al.’s loop-lifting (2010)
and more recent work on query flattening (Ulrich and Grust 2015),
and it would be interesting to evaluate the performance of these
techniques on provenance queries.

Other authors, starting with Green et al. (2007), have proposed
provenance models based on annotations drawn from algebraic
structures such as semirings. While initially restricted to conjunc-
tive queries, the semiring provenance model has subsequently been
extended to handle negation and aggregation operations (Amster-
damer et al. 2011). Karvounarakis et al. (2010) developed ProQL,
an implementation of the semiring model in a relational database via
SQL query extensions. Glavic et al. (2013) present further details of
the Perm approach described above, show that semiring provenance
can be extracted from Perm’s provenance model, and also describe a
row-level form of where-provenance. We believe that semiring poly-
nomial annotations can also be extracted from lineage in Links, but
supporting other instances of the semiring model via query rewriting



in Links appears to be nontrivial due to the need to perform aggre-
gation. In future work, we intend to increase the expressiveness of
Links queries to include aggregation and grouping operations and
strengthen the query normalization results accordingly.

LinksW and LinksL are currently separate extensions, and cannot
be used simultaneously, so another natural area for investigation is
supporting multiple provenance models at the same time. We intend
to explore this (as well as consider alternative models). Cheney et al.
(2014a) presented a general form of provenance for nested relational
calculus based on execution traces, and showed how such traces can
be used to provide “slices” that explain specific results. While this
model appears to generalize all of the aforementioned approaches, it
appears nontrivial to implement by translation to relational queries,
because it is not obvious how to represent the traces in this approach
in a relational data model. (Giorgidze et al. (2013) show how to
support nonrecursive algebraic data types in queries, but the trace
datatype is recursive.) This would be a challenging area for future
work.

Our translation for lineage is similar in some respects to the
doubling translation used in Cheney et al. (2014b) to compile a
simplified form of Links to a F#-like core language. Both translations
introduce space overhead and overhead for normal function calls
due to pair projections. Developing a more efficient alternative
translation (perhaps in combination with a more efficient and more
complete compilation strategy) is an interesting topic for future
work.

6. Conclusions
Our approach shows that it is feasible to implement provenance by
rewriting queries outside the database system, so that a standard
database management system can be used. By building on the well-
developed theory of query normalization that underlies Links’s
approach to language-integrated query, our translations remain
relatively simple, while still being translated to SQL queries that are
executed efficiently on the database. To the best of our knowledge,
our approach is the first efficient implementation of provenance
for nested query results or for queries that can employ first-class
functions; at any rate, SQL does not provide either feature.

Links is a research prototype language, but the underlying
ideas of our approach could be applied to other systems that
support comprehension-based language-integrated query, such as
F# and Database Supported Haskell. There are a number of possible
next steps, including extending Links’s language-integrated query
capabilities to support richer queries and more forms of provenance.
Our results show that provenance for database queries can be
implemented efficiently and safely at the language-level. This is
a promising first step towards systematic programming language
support for provenance.
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A. Benchmark code
This appendix contains the full listings for the where-provenance
and lineage bemchmarks. Figures 19 and 20 show the plain table
declarations and declarations with where-provenance, respectively.
These tables also include readonly and tablekeys annotations which
were suppressed in the paper; the former indicates that a field is
read-only and the latter lists the subsets of the fields that uniquely
determine the others.

Figure 21 shows the helper functions used by the plain versions
of the queries, and Figure 22 shows the variants of these functions
adapted to work with where-provenance. Some of the functions,
such as any, need no changes at all because they are polymorphic.
Figure 23 shows the versions of the queries with some provenance
(the someprove benchmarks).

Figure 24 shows the plain queries without lineage annotations;
these also employ abbreviations from Figure 21.

var db = database ”links”;

var departments =
table ”departments”
with (oid: Int, name: String)
where oid readonly
tablekeys [[”name”],[”oid”]]
from db;

var employees =
table ”employees”
with (oid: Int, dept: String, name: String, salary : Int)
where oid readonly
tablekeys [[”name”],[”oid”]]
from db;

var tasks =
table ”tasks”
with (oid: Int, employee: String, task: String)
where oid readonly
tablekeys [[”oid”]]
from db;

var contacts =
table ”contacts”
with (oid: Int, dept: String, name: String, ”client”: Bool)
where oid readonly
tablekeys [[”name”], [”oid”]]
from db;

Figure 19. Table declarations for lineage, nolin, and noprov
queries.

var departments =
table ”departments”
with (oid: Int, name: String)
where oid readonly, name prov default
tablekeys [[”name”]]
from db;

var employees =
table ”employees”
with (oid: Int, dept: String, name: String, salary : Int)
where oid readonly, dept prov default,

name prov default, salary prov default
tablekeys [[”name”]]
from db;

var tasks =
table ”tasks”
with (oid: Int, employee: String, task: String)
where oid readonly, employee prov default, task prov default
tablekeys [[”oid”]]
from db;

var contacts =
table ”contacts”
with (oid: Int, dept: String, name: String, ”client”: Bool)
where oid readonly, dept prov default,

name prov default, ”client” prov default
tablekeys [[”name”]]
from db;

Figure 20. Table declarations for where-provenance queries (except
noprov).



sig tasksOfEmp: ((name:String| )) -> [String]
fun tasksOfEmp(e) {
for (t <-- tasks)
where (t.employee == e.name)

[t.task]
}

sig contactsOfDept: ((name:String| ))
-> [(”client”:Bool,name:String)]

fun contactsOfDept(d) {
for (c <-- contacts)
where ((d.name) == c.dept)

[(”client” = c.”client”, name = c.name)]
}

sig employeesByTask: ((employee:String| ))
-> [(name:String,salary:Int,tasks:[String])]

fun employeesByTask(t) {
for (e <-- employees)
for (d <-- departments)
where (e.name == t.employee && e.dept == d.name)

[(name = e.name, salary = e.salary, tasks = tasksOfEmp(e))]
}

sig employeesOfDept: ((name:String| ))
-> [(name:String,salary:Int,tasks:[String])]

fun employeesOfDept(d) {
for (e <-- employees)
where ((d.name) == e.dept)

[(name = e.name, salary = e.salary, tasks = tasksOfEmp(e))]
}

sig any : ([a],(a) -a-> Bool) -a-> Bool
fun any(xs,p) {

not(empty(for (x <- xs) where (p(x)) [()]))
}

sig all : ([a],(a) -a-> Bool) -a-> Bool
fun all(xs, p) {

not(any(xs, fun (x) { not(p(x)) }))
}

sig contains: ([a], a) -> Bool
fun contains(xs, u) {

any(xs, fun (x) { x == u })
}

fun isPoor(x) { x.salary < 1000 }
fun isRich(x) { x.salary > 1000000 }

sig get: ([(name:a::Any|b)], ((name:a::Any|b)) -c-> d::Any)
-c-> [(name:a::Any,tasks:d::Any)]

fun get(xs, f) {
for (x <- xs)

[(name = x.name, tasks = f(x))]
}

sig outliers: ([(salary:Int|a)]) -> [(salary:Int|a)]
fun outliers(xs) {

filter(fun (x) { isRich(x) || isPoor(x) }, xs)
}

sig clients: ([(”client”:Bool|a)]) -> [(”client”:Bool|a)]
fun clients(xs) {

filter(fun (x) { x.”client” }, xs)
}

Figure 21. Helper functions noprov.

# the original (allprov) Q1
fun q org() {
for (d <-- departments)

[(contacts = contactsOfDept(d),
employees = employeesOfDept(d),
name = d.name)]

}

sig tasksOfEmp: ((name:Prov(String)| )) -> [Prov(String)]
fun tasksOfEmp(e) {
for (t <-- tasks)
where ((data t.employee) == data e.name)

[t.task]
}

sig contactsOfDept: ((name:Prov(String)| ))
-> [(”client”:Prov(Bool),name:Prov(String))]

fun contactsOfDept(d) {
for (c <-- contacts)
where ((data d.name) == data c.dept)

[(”client” = c.”client”, name = c.name)]
}

sig employeesByTask: ((employee:Prov(String)| ))
-> [(name:Prov(String),salary:Prov(Int),tasks:[Prov(String)])]

fun employeesByTask(t) {
for (e <-- employees)
for (d <-- departments)
where ((data e.name) == (data t.employee)

&& (data e.dept) == (data d.name))
[(name = e.name, salary = e.salary, tasks = tasksOfEmp(e))]

}

sig employeesOfDept: ((name:Prov(String)| ))
-> [(name:Prov(String),salary:Prov(Int),tasks:[Prov(String)])]

fun employeesOfDept(d) {
for (e <-- employees)
where ((data d.name) == data e.dept)

[(name = e.name, salary = e.salary, tasks = tasksOfEmp(e))]
}

fun get(xs, f) {
for (x <- xs)

[(name = x.name, tasks = f(x))]
}

sig outliers: ([(salary:Prov(Int)|a)]) -> [(salary:Prov(Int)|a)]
fun outliers(xs) {

filter(fun (x) { isRich(x) || isPoor(x) }, xs)
}

sig clients: ([(”client”:Prov(Bool)|a)]) -> [(”client”:Prov(Bool)|a)]
fun clients(xs) {

filter(fun (x) { data x.”client” }, xs)
}

Figure 22. Helper functions allprov, someprov (put data in a bunch
of places).



# Q1
sig q1 : () -> [(contacts: [(”client”: Bool, name: String)],

employees: [(name: Prov(String), salary: Prov(Int),
tasks: [Prov(String)])],

name: Prov(String))]
fun q1() {
for (d <-- departments)

[(contacts = for (c <- contactsOfDept(d))
[(”client” = data c.”client”, name = data c.name)],

employees = employeesOfDept(d),
name = d.name)]

}

# Q2
sig q2 : () -> [(d: String, p: (String, String, Int))]
fun q2() {
for (d <- q org())
where (all(d.employees, fun (e) {

contains(map(fun (x) { data x }, e.tasks), ”abstract”)
}))

[(d = data d.name, p = prov d.name)]
}

# Q3: employees with lists of tasks
sig q3 : () -> [(b: [Prov(String)], e: Prov(String))]
fun q3() {
for (e <-- employees)

[(b = tasksOfEmp(e), e = (e.name))]
}

# Q4: departments with lists of employees
sig q4 : () -> [(dpt:Prov(String), emps:[(String, String, Int)])]
fun q4() {
for (d <-- departments)

[(dpt = (d.name),
emps = for (e <-- employees)

where ((data d.name) == (data e.dept))
[prov e.name])]

}

# Q5: Tasks with employees and departments
fun dropProv(l) {

map(fun (x) { data x }, l)
}

# Only get provenance of tasks, drop other provenance. Reuses
# employeesByTask, which still has provenance types, but does not
# actually compute all provenance.
sig q5: () -> [(a: Prov(String),

b: [(name: String, salary: Int, tasks: [String])])]
fun q5() {
for (t <-- tasks)

[(a = t.task, b = for (x <- employeesByTask(t))
[(name = data x.name,

salary = data x.salary,
tasks = dropProv(x.tasks))])]

}

# Q6 Drop prov on department.
sig q6: () -> [(department: String,

people: [(name: Prov(String), tasks: [String])])]
fun q6() {
for (x <- q org())

[(department = data x.name,
people = get(outliers(x.employees),

fun (y) { map(fun (z) { data z }, y.tasks) }) ++
get(clients(x.contacts),
fun (y) { [”buy”] }))]

}

Figure 23. Queries someprov.

# AQ6 : [(department: String, outliers: [(name: String, ...
for (d <- for (d <-- departments)

[(employees = for (e <-- employees)
where (d.name == e.dept)

[(name = e.name, salary = e.salary)],
name = d.name)])

[(department = d.name,
outliers = for (o <- d.employees)

where (o.salary > 1000000 || o.salary < 1000)
[o])]

# Q3 : [(b: [String]), e: String)]
for (e <-- employees) [(b = tasksOfEmp(e), e = e.name)]

# Q4 : [(dpt: String, emps: [String]))]
for (d <-- departments)

[(dpt = d.name,
emps = for (e <-- employees)

where (d.name == e.dept)
[(e.name)])]

# Q5 : [(a: String, b: [(name: String, salary: Int, ...
for (t <-- tasks) [(a = t.task, b = employeesByTask(t))]

# Q6N : [(department: String, people:[(name: String, ...
for (x <-- departments)

[(department = x.name,
people = (for (y <-- employees)

where (x.name == y.dept &&
(y.salary < 1000 || y.salary > 1000000))

[(name = y.name,
tasks = for (z <-- tasks)

where (z.employee == y.name)
[z.task])]) ++

(for (y <-- contacts)
where (x.name == y.dept && y.”client”)

[(name = y.dept, tasks = [”buy”])]))]

# Q7 : [(department: String, employee: (name: String, ...
for (d <-- departments)
for (e <-- employees)
where (d.name == e.dept && e.salary > 1000000 || e.salary < 1000)

[(employee = (name = e.name, salary = e.salary),
department = d.name)]

# QC4 : [(a: String, b: String, c: [(doer: String, ...
for (x <-- employees)
for (y <-- employees)
where (x.dept == y.dept && x.name <> y.name)

[(a = x.name,
b = y.name,
c = (for (t <-- tasks)

where (x.name == t.employee)
[(doer = ”a”, task = t.task)]) ++

(for (t <-- tasks)
where (y.name == t.employee)

[(doer = ”b”, task = t.task)]))]

# QF3 : [(String, String)]
for (e1 <-- employees)
for (e2 <-- employees)
where (e1.dept == e2.dept && e1.salary == e2.salary

&& e1.name <> e2.name)
[(e1.name, e2.name)]

# QF4 : [String]
(for (t <-- tasks)
where (t.task == ”abstract”)

[t.employee]) ++
(for (e <-- employees)
where (e.salary > 50000)

[e.name])

Figure 24. Nolineage queries
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