
Master’s Thesis

Uselets:
UIs using Actors as an

Abstraction for Composable
Communicating Components

Thomas Weber

Institut für Software & Systems Engineering

Universitätsstraße 6a D-86135 Augsburg

Master’s Thesis

Uselets:
UIs using Actors as an

Abstraction for Composable
Communicating Components

Autor: Thomas Weber
Matrikelnummer: 1450761

Beginn der Arbeit: 1. August 2017
Ende der Arbeit: 1. Februar 2018

Erstgutachter: Prof. Dr. Alexander Knapp
Zweitgutachter: Prof. Dr. Bernhard Bauer

Betreuer: Prof. Dr. Alexander Knapp

Institut für Software & Systems Engineering

Universitätsstraße 6a D-86135 Augsburg

Hiermit versichere ich, dass ich diese Masterarbeit selbständig verfasst habe. Ich habe
dazu keine anderen als die angegebenen Quellen und Hilfsmittel verwendet.

Teile dieser Arbeit sind im Zuge der ICFP 2017 Student Research Competition veröf-
fentlich worden.

Augsburg, den 31. Januar 2018 Thomas Weber

Acknowledgments

Let me express my gratitude for the people at LFCS, University of Edinburgh, especially
James Cheney, Simon Fowler, and Sam Lindley, for hosting me there while working on
this thesis. Not only is some of their work the basis and inspiration for this thesis, their
feedback and encouragement has been invaluable, too.
Also, my thanks to Prof. Alexander Knapp for his guidance and feedback throughout

the writing of this thesis and the Masters program in general.
Lastly, to all those who read this thesis and gave feedback on it: Thank you for finding

the time and diligence.

Abstract

Applications with rich user-interaction, especially web-apps, have become part of the
day-to-day lives of most users, both for work and leisure. More complex applications
always mean more complex development though, including for the user interface. Using
reusable off-the shelf components can help here: By encapsulating functionality, parts of
the application can be developed independently, which makes them easier to understand,
write, and maintain. But slicing the application into small parts creates the need for
composition, coordination, and communication, which brings its own challenges.
This thesis proposes a concept for composable, communicating UI components called

Uselets, that use Actor-style message passing.
Uselets can be used both to abstractly model the UI and to implement it, both without

what is usually part of the expertise of software developers: presentation and design aspects.
Visualization is delegated, creating a clear separation of development domains and concerns.
Instead the focus is on the structure and interaction logic, from which the resulting user
interface is inferred automatically.
By building the Uselet abstraction on top of the Actor model, they provide simple

composition and a unified interface for interaction. This allows developers to focus on the
core aspects of any user interface: Structure and interaction.
The examples and implementations provided with this thesis focus on the creation of

web-based UIs, but the concept of Uselets could find much further use for all kinds of
applications.

vii

Contents
1 Introduction 1

2 Background Information 5
2.1 Web-Development . 5

2.1.1 A Brief History . 5
2.1.2 Main Challenges . 6
2.1.3 Main Advantages . 7

2.2 Concurrency and Actors . 8
2.2.1 The Actor Model . 8

2.3 Links . 9
2.3.1 Core Syntax . 9
2.3.2 Type System . 9
2.3.3 Formlets . 10
2.3.4 Concurrency . 11
2.3.5 Client-Server-Interaction . 12

3 Uselets Example 15

4 Uselets Concepts 21
4.1 Abstractions . 22
4.2 Usage Methodology . 28
4.3 Key Benefits . 32
4.4 Visual Notation . 33

5 Uselets Implementation 35
5.1 Uselets in Links . 35
5.2 Uselets in JavaScript . 37
5.3 Implementation Differences and Challenges 40
5.4 Testing . 42
5.5 Debugging . 44

6 Case Studies 47
6.1 Kanban Board . 47
6.2 TodoMVC . 51

7 Evaluation 55

8 Related Work 59

9 Conclusion and Future Work 63
9.1 Future Work . 63
9.2 Conclusion . 66

ix

1 Introduction

These days software applications, especially web-based ones, have become ubiquitous. But
to make them accessible to a large number of people, there is a definitive need for quality
user interfaces. Developing larger UIs is a cumbersome task though, prone to errors,
inconsistencies etc. A common solution is breaking the UI into smaller components that
can be developed individually (e.g. [34, 44, 36]). But wiring these together is frequently a
tedious process, full of repetition and boilerplate.

The act of breaking a large monolithic system into smaller parts is very similar to what
you do, when you create a distributed system. To tackle the challenges of distributed
systems, people have come up with various abstractions and models to hide away the
low-level details, for example the Actor model [2, 51]. Leveraging the Actor model, this
thesis introduces Uselets, a high-level, component-based abstraction for web-based UIs,
inspired by Formlets [24], composable web-forms.

Other than the name suggests, there is only limited overlap, in implementation or usage,
to the original Formlets though. In fact, the application domain for those two is already
quite different: Formlets focus on forms that are submitted to the server where they
are evaluated, while Uselets are meant for primarily client-side interaction with only the
addition of client-server-communication. Yet they do share the major design goals: Good
composability while hiding low-level details.

Uselets attempt to transfer the benefits of Formlets to more general UI elements. Besides
that, they provide additional improvements, such as a more uniform way of defining
interaction and a stricter separation of presentation and logic.

• By modelling the UI like one would model an Actor system, the focus is on the
internal logic and possible interactions. The presentation is delegated to clearly
defined holes for people with design expertise to fill.
• Each Uselet is fully self-contained, making it easy to compose with others, simplifying
the development of larger applications. With that, one can imagine repositories of
pre-made Uselets that can be re-used in a plug-and-play fashion.
• The development of custom Uselets focuses exactly on the two important (non-

presentation) aspects of a UI: In what structure of data is to be presented to the user
and how the user can interact with it. Boilerplate and configuration overhead is kept
to a minimum.
• All interaction is unified as message-passing.
• Interaction and the resulting change in the system is defined in a declarative way.
• With all change in the system being the result of an interaction, i.e. a message,
Uselets are simple to test and to debug (see Sect. 5.4 and 5.5).
• To implement Uselets, only very few features are necessary, making the implementa-
tion in different languages simple (see Chapter 5).

To bridge the gap from an abstract model to a concrete implementation, Uselets serve both
as the conceptual model for the problem space and concrete framework for implementation

1

1 Introduction

in the solution space. To showcase the viability of the abstract for building concrete HTML-
based applications, two implementations, one in the functional programming language
Links [23] and the other in JavaScript, are provided.

While the languages of those two implementations differ greatly, the underlying model is
the same, and the user code is very similar (see Sect. 5.3 for a comparison).
To demonstrate the viability of Uselets for developing applications, two case studies

(Chapter 6) are provided. Since Uselets allow specifying an application in an abstract
way, i.e. without a concrete implementation, Chapter 7 evaluates Uselets in the context of
criteria proposed in the literature for such abstract specifications.

With Uselets we get a new framework for creating web UIs and potentially UIs in general.
Given the large number of existing frameworks to improve UI and web development, the
desirability of yet another one needs some justification. The comparison with some popular
frameworks, as well as plain JavaScript as the base-language (Chapter 8), demonstrates
the different approaches and their different focus, advantages and disadvantages.
Finally, Sect. 9.1 proposes a number of improvements and potential other applications

for Uselets.

Motivation

While there are many ways for creating user interfaces, web-based applications and their
UIs are, together with mobile apps, some of the most important and popular ways for
creating software for end-users [62]. From their humble origins as fully static content,
web-based user interfaces have evolved into full, rich, and dynamic applications. The many
tools and APIs available nowadays certainly offer great potential but also immediately add
complexity.
The level complexity of those applications unfortunately makes them prone to errors.

Understanding them to their full extend becomes pretty much impossible for one individual.
Extensive testing is necessary but even that rarely is sufficient. Approaches to break down
complex systems into smaller, more comprehensible parts usually only push the complexity
to a different level, e.g. the added overhead of composing the system.
Obviously, having errors in the system is undesirable, regardless of at what level they

occur. Not only do they impair system reliability and correctness, they also impart
additional costs for fixing, especially if they are found only late during development or in
productive use.
A common solution, when the complexity of something exceeds one’s capabilities of

understanding, is to “use something that is simpler, safer or cheaper than” [80] the original
thing, i.e. a model. Developing systems on the foundation of a model is a well-known
practice in software engineering (and engineering in general) with different abstractions
and models available. Such models offer a higher-level view of the system while hiding
away low-level and implementation details. This allows software engineers to focus on the
important aspects of their applications, i.e. focus on the problem space, not on the solution
space [81], and potentially even enables domain experts to participate in the design process.
Not only are systems often easier to describe like this, they are frequently also simpler

2

to understand since the description is not polluted by unnecessary implementation details.
This again helps developers and non-developers understand what is going on.

Some abstractions and models even allow the use of verification methods like model
checking [13]. By formally verifying properties of the model, developers can give certain
guarantees for the behaviour of the system based on that model. Such guarantees are
desirable for developers, especially if the system is embedded into other systems, because
those surrounding systems can be developed assuming those guaranteed properties. It also
is beneficial for users of the system, since developers can ensure certain requirements will
hold, such as system reliability or correctness.
Guarantees like that of course only hold if the system actually implements what the

model describes. Manual implementation of the model still remains error-prone, but with
a sufficiently detailed model it can be possible to generate either the whole code or parts
of it, ideally yielding an executable model. This reduces the amount of code developers
have to write, and brings a number of additional benefits: First and foremost, generated
code should have less errors than manually written code. This of course depends on the
generator to be bug free and the translation from model to code to be correct. But a
single generator written and maintained by experts should be more reliable than having
many applications manually written by developers of different levels of expertise. This
also lowers the entry barrier, since developers are not required to have intricate knowledge
of their platform and language but can rely on the code generator to produce code of
adequate quality. Assuming they are possible, a code generator can also perform a number
of optimizations based on the target platform.

Lastly, having code generated from an abstract model gives greater platform independence.
While the web is a dominant platform for developing and deploying applications, it certainly
is not the only one. Native mobile applications, desktop applications etc. are an important
part of peoples’ daily lives as well. Since not every platform is available to every user,
it is often necessary to build an application multiple times, for each relevant platform.
Developing applications by first creating an abstract model, and basing the implementations
on that model, could potentially reduce the work of developing for multiple platforms
significantly: With an adequate model, it could be possible to generate the majority of
code from that model, so that developers only need to fill in the remaining platform-specific
parts that could not be generated.

Based on this information, there are a number of criteria that an abstract model should
have (e.g. [82, 87]). We can use these criteria to assess the quality of our abstraction,
whether it satisfies these and other criteria (Sect. 7), e.g.:

• The abstraction should be conceptually simple to understand for both programmers
and non-programmers.
• In particular no extensive knowledge of the underlying platform and its intricacies
should be necessary.
• The implementation should either be generatable from the specification or the
specification acts as an executable model, i.e. it can be used as runnable code.
• System properties should be verifiable either fully automated or semi-automated.
• The system created via the model should be less error-prone than manually written

3

1 Introduction

code, i.e. there should be fewer potential sources for errors and errors should be
easier to identify and diagnose.

4

2 Background Information

To gain a full understanding of the Uselets abstraction, some background information is
necessary. For this purpose, the following chapter serves as an introduction to some general
web-development concepts and the Actor concurrency model. It also gives a brief overview
of the Links programming language, as the majority of examples are written in Links.
For readers with some general knowledge of these topics, or those interested in but a

high-level overview of Uselets, it is perfectly possible to skip this section for now, jump
directly to the core description of Uselets (Chapter 4), and to refer back to this chapter
merely as reference for more background information.

2.1 Web-Development

Since Uselets are primarily a programming abstraction for web-based UIs, the following
section will give a brief overview on web-technologies, their historical development, and
the advantages and challenges of developing for the web.

2.1.1 A Brief History

The internet and its attached technologies have become one of the most important software
platforms. At its origin though it was just meant to exchange simple, annotated text
documents. Beginning of the 1990s the HyperText Transfer Protocol (HTTP) and the
HyperText Markup Language (HTML) were introduced by Tim Berners-Lee and others [7]
to exchange documents at CERN in Switzerland.
Both these technologies are still under active development even today, resulting in

HTTP/1.1 [37], which was state of the art until 2015 when HTTP/2 was introduced [6]. It
was further extended with additional specifications, e.g. for authentication, caching etc.
[38, 39].

HTML too reached a long lived standard end of the 1990 with HTML 4.01 [78]. XHTML
added to that soon after with a stricter, XML-based syntax [47]. Both were de facto
replaced with the advent of HTML5 in 2014 [52]. HTML5 greatly revamped parts of
HTML and added a large number of new elements for new types of content. Next to the
current HTML specification, additional technologies, e.g. WebSockets, WebGL, the current
iterations of CSS, the styling language of the web, etc., which are often times considered
part of HTML5, have their own specifications.

Since the adoption of HTML features heavily relies on when browser-vendors implement
them, many features have been introduced gradually. This continues to be the case; many
of the newer additions to HTML5 in the succeeding versions 5.1 and 5.2 and orthogonal
specifications have different levels of browser support.
These technologies, while the foundation of web-applications, merely provide static

content though. To enable full dynamic applications, like desktop or mobile applications,
on the web, JavaScript, or ECMAScript, the scripting language of the web, was necessary.

5

2 Background Information

Introduced shortly after HTML, JavaScript, in its beginnings LiveScript for Netscape
Navigator and JScript for Internet Explorer, was originally not a single language, due
to the then ongoing “browser-war”, i.e. the rivalry between Netscape and Microsoft on
browser-market dominance. Soon after, in 1996, it was standardized as ECMAScript, which
was subsequently updated and improved, leading to the current state of the ECMAScript
standard and the JavaScript language.
At the beginning JavaScript was used primarily to add simple interaction to static

content. This was the case roughly until AJAX, i.e. asynchronous data transfer, and
related technologies were proposed in 2005 [43]. This led to the development of many now
popular libraries like jQuery [85] and Dojo Toolkit [56].

This paved the way for many rich applications that made up what is commonly referred
to as Web 2.0 [74, 83], defined by characteristics like rich user interaction, user participation,
and software-as-a-service, via rich APIs, commonly REST APIs [40]. Those principles and
technologies are still the foundation for applications today, even though it is not certain
whether Web 2.0 is still current or a new version would be adequate.

More recent additions to the family of HTML and JavaScript specifications are for
example WebWorkers [89], which introduce concurrency to JavaScript. Four further speci-
fications, HTML Imports, Shadow DOM, Templates, and Custom Elements ([18, 20, 19,
16] respectively) intend to improve modularity, reusability, and separation of concerns for
web development by paving the way for WebComponents [21].

Modern JavaScript provides a high-level language with a great number of APIs to access
the many features and extensions available in modern browsers. While there were competing
concepts to add interactivity to web applications, JavaScript is now the dominant tool,
used by the overwhelming majority of websites [77].
Support for HTML based applications and progressive web apps on mobile platforms

adds to the spread of HTML and JavaScript based UIs beyond the web-browser. Besides
its use for client-side programming JavaScript has also been widely adopted for other uses,
such as server-side programming (e.g. [71, 91]). Shedding its original bad reputation [25],
it is now used in many projects beyond just extending static content on web pages.
Again, as with HTML features, JavaScript’s newer language features are subject to

varying browser and runtime environment support, leading to a number of fixes, polyfills, etc.
Another common solution in recent times is source-to-source compilation or “transpilation”.
Developers do not write JavaScript but a language that is a superset of JavaScript [66], a
different previously existing language [31] or a completely new language. This, amongst
other benefits, allows developers to write their code without worrying about compatibility,
because that is ensured by the transpiler.

2.1.2 Main Challenges

As with any programming environment, especially one that has grown as dynamically as
the web has, it is no surprise that certain challenges exist for developers.

As mentioned above, many features are not immediately adopted by every browser. Since
the web-browser is the primary environment for web-based UIs this requires developers to

6

2.1 Web-Development

build their applications with the different browsers in mind, always double checking and
providing fallbacks should a feature not be available.

JavaScript also has a number of quirks and idiosyncrasies in its language design that are
often not immediately clear to beginners. These can result in everything from poor code
legibility to highly unexpected behaviour [69, 25]. Consequently, good tool support with
e.g. a linter is necessary to ensure good practices and prevent common pitfalls and the use
of poor code constructs.
This is especially true for amateur programmers or beginners. Since JavaScript has

a fairly low entry barrier, it is a common language for people with little programming
experience. This, and the fact that on the web it is simple to look up other people’s code,
leads to a lot of bad practices being propagated.
Some might argue [25] that the quality of the ECMA standard and other literature on

JavaScript have played their part in the prevalence of sub-par JavaScript and the resulting
poor reputation of the language.

2.1.3 Main Advantages

But while those are undeniably challenges, the web as platform has quite a few advantages
as well. They are responsible for the popularity and importance of the web.
Its enormous reach is certainly one of the biggest advantages. Nearly every personal

computer and mobile devices has a web-browser. Since this is about the only requirement
on the client side, a web-based application is immediately available to almost everyone.
This also cuts out software distribution, as hard-copy or download, entirely. But many
web-applications can also be run offline if needed, e.g. as progressive web-apps [8], where
only missing data is fetched from some server.
The simplicity of deployment and execution, especially locally for inspection during

development, makes JavaScript especially attractive for beginners, since results are im-
mediately visible and it is easy to try out different solutions and see their effect. The,
by now, extensive tool support in browsers for experimentation, inspection, debugging
etc. simplifies development too, while the enormous eco-system of libraries, frameworks,
examples, etc. gives beginners easy starting points to learn web-development and, at the
same time, allows professionals to prune repetitive work by extensive code-re-use.
Thanks to source-to-source compilation, which is widely available for JavaScript (e.g.

[31, 66]), it is sometimes not even necessary to learn new languages, when a developer
already knows one and is comfortable with it. And even then, the range of languages that
can be translated to JavaScript is wide enough, such that everyone can find one that suits
them best. This effectively negates the issue of browser compatibility for many scenarios,
since the transpilers can take care of that. They can also improve code further during
compilation, e.g. optimize for performance.
And while browser adoption is an issue, ultimately web-technologies are standardized,

which adds to platform independence and does not force users and developers to lock into
some proprietary eco-system.
The web is a ubiquitous platform. Developing for it is simple and accessible. When

developing new tools or abstractions for web-development, be it for user-interfaces or any

7

2 Background Information

other part, it clearly is important to maintain these advantages.

2.2 Concurrency and Actors

High-level abstractions and models are very common in areas like distributed systems,
where they are used heavily to hide low-level implementation details. Due to the inert
complexity of having a distributed system, it is very challenging to ensure all the potential
pitfalls, like race-conditions and deadlocks, are dealt with. Abstractions for distributed
system hide away all these challenges and low-level details, allowing developers to focus on
their applications logic.

Over the years there have been a number of systems, some more theoretical, e.g. process-
algebras like Milner’s π-calculus [68] and CCS [67], and some that have led to very practical
implementations, such as CSP [53] or the Actor model [51].
Many of them are based on some form of message-based communication. The system

consists of sources of computation, the distributed parts of the system, that communicate by
sending each other messages. The exact scheme of communications depends on the model,
e.g. the channel-based communication of CSP, where there are dedicated FIFO channels
for messages, or more direct message sending, where the endpoints of the communications
are the computing elements themselves, as is the case in the Actor model.

2.2.1 The Actor Model

As mentioned, one of those models for describing distributed systems is Hewitt’s Actor Model
[51]. This model has found a number of practical implementations in many programming
languages, such as the built-in concurrency in Erlang [4, 88] or Links [23], or frameworks
such as Akka [63].

The Actor system uses the name-giving Actors as its core primitive. An Actor is a single
source of computation that, aside from its computation, can perform three actions:

• Send messages to other Actors
• Receive messages and execute a behaviour depending on the incoming message
• Spawn new Actors

With these three operations, “Actors are intended to (be able to) model all digital
computation” [49]. The relative simplicity yet expressiveness of those three rules makes this
model a popular one, evident in the many implementations of the Actor model. Besides
the practical application, various people have also come up with formal semantics to allow
reasoning about Actor systems [46, 3, 14].
While the third rule suggests a parent-child relation between Actors and thus a tree

topology, Actors in an Actor system do not necessarily follow a strict, pre-defined topology.
To send a message to an Actor a sender must only know the recipients address. Since
messages itself can contain addresses, the relationship which Actor knows which and thus
the topology is flexible.
Yet a topology can be defined by e.g. by hardwiring a rigid structure or implicitly by

addressing Actors with a scheme that yields a certain topology. In the second version the

8

2.3 Links

topology is not enforced though, since a topological addressing scheme does not prevent
Actors to look up other addresses and send messages outside the topological bounds.

The topological flexibility means that composing of Actors is simple: If the address of
an Actor is known to other Actors in a system, e.g. by receiving it in a message, the Actor
is part of the system. There are additional, slightly more elaborate schemes to compose
larger systems of Actors (cf. [2]).
With these properties the Actor model alleviates a number of issues of concurrency,

most notably the complexity and composability. The proximity of conceptual model and
practical implementations minimizes the overhead of transitioning between those two.
Extensive research into the properties of Actors [3, 57], modelling, and verification [32, 33,
55, 61], plus a myriad of implementations for various languages [4, 57, 63] make the Actor
model a good foundation for a distributed abstraction.

2.3 Links

As one of the Uselet implementations, and the majority of the examples in this thesis
utilize Links [23], this section will provide a brief introduction to this language. 1

Links is a strongly typed functional programming language with primary focus on web
development. It aims to ease development by providing a single language for all three
common “tiers” of web-programming: Database, backend and frontend.

It also serves as the research vehicle for various language features at the LFCS, University
of Edinburgh, where it is being developed.

Some of those features will be described in the following sections, with a focus on those
that are of relevance for the Uselets implementation. For more in-depth information on
Links, see the language documentation.

2.3.1 Core Syntax

Links’ core syntax provides all the features one would expect from a functional programming
language: Primitive types, functions, basic arithmetic and boolean operations, and some
basic data-structures like lists, tuples, and records.

Value declarations with the “var” keyword are, other than the keyword suggests, constant.
Functions are declared with the keyword “fun” and can be preceded by a type signature
“sig”

2.3.2 Type System

Links is a strongly statically typed language. It has HM type inference, so type annotations,
while possible, can be omitted in many cases. Besides the primitive types for values and
the built-in data-structures, variant types can be used as custom type constructors.

1Since Links is still under active development, the following section describes the Links languages at its
Dalry release. Some sections may not be accurate for other releases.

9

http://links-lang.org

2 Background Information

Effects

Along with types for values and variant types, Links also supports effect types. Functions
are annotated, next to their input and output, with effects that can happen during run-time.
Absence of an effect guarantees it will not happen, presence means it might happen. There
are numerous variations of syntactic sugar for annotating effects.
Effects are for example the wild effect which represents that the function does not

execute code on the database, or the hear effect which describes what message are accepted
and sent in a message passing environment.

Variant types and effect types are represented as polymorphic row types: Unless explicitly
constraint, a term that is typed with a certain row type can be used where a row type is
expected that subsumes that of the term. For example, a term of variant type A can be
used in an instance where a type [| A | B |] is expected. That is because the term A will
be typed, by the inference, as an open row type [| A | _ :: Any], i.e. a polymorphic
type that includes the type-constructor A and potentially others.

2.3.3 Formlets

Part of the original work on Links were Formlets [24]. Formlets are a high-level abstraction
for composable, type-safe web-forms, and act as inspiration for Uselets.

Their goal is to solve the issue that arises when data is entered in a form on a web-client
and submitted to the server. For trivial examples this is straight forward enough, but as
soon as the entered data has a more complex structure or the code has to be updated
frequently, due to e.g. changes in the requirements, this can lead to inconsistencies and
other problems.
A single Formlet encapsulates both sides of this scenario, the client side with some

widget, for entering the data, and the server side that parses the entered data into a desired
data-structure. Formlets can then be composed to construct more complex data-structures
from primitive ones, while on the one side the widgets are put together and on the other the
parsing composes too, yielding the desired data at the end. See Code 2.1 for an example
Formlet for a Date, composed from three Formlets for numbers.

1 fun dateFormlet () {
2 formlet <#>
3 Day: { inputInt -> day}
4 Month: { inputInt -> month}
5 Year: { inputInt -> year}
6 </#>
7 yields {
8 Date(day , month , year)
9 }

10 }

Listing 2.1: A Formlet for entering a date. It is composed from three inputs for integers that
are bound to the names day, month, and year, respectively. The yields clause describes how
the submitted data should be processed, in this case passed to the Date type-constructor.

To embed a Formlet in a page it has to be rendered, which requires a handler. A
handler is a function that performs some action with the parsed user input, returning

10

2.3 Links

some XML/HTML as result. The rendering yields the initial XML/HTML, which can be
embedded into a page (see Code 2.2).

1 fun dateHandler (date) {
2 <h1 >Date submitted </h1 >
3 }
4

5 var initialXml = render (dateFormlet (), dateHandler);
6

7 page <div >
8 { initalXml }
9 </div >

Listing 2.2: Rendering of a Formlet, using a simple handler function. Once rendered the
returned initial XML can be embedded into a page.

The whole of Formlets is based on the theoretical framework of applicative [24], and later
monoidal [79], functors. Additional work on Formlets extended it with initial or default
values [79] and input validation [22].

2.3.4 Concurrency

The built-in concurrency model for Links is Actor and channel based. Using spawnAt or its
specializations, spawn and spawnClient, the programmer can create an Actor-process on
client or server. An Actors behaviour is defined by a receive block. A receive suspends
function execution until a message is received. Pattern matching allows switching behaviour
depending on the incoming message (see Code 2.3). The handling receive must again
return a receive block if the Actor should continue to run. This can either be done
recursively to maintain the same Actor behaviour or it can be switched for a different one,
hot-swapping Actor behaviour.

1 fun actorHandler () {
2 receive {
3 case MyMsg ->
4 print (" MyMsg ");
5 actorHandler ()
6 case _ ->
7 print (" Unknown message ");
8 actorHandler ()
9 }

10 }
11

12 var serverProcess = spawn { actorHandler () };
13 var clientProcess = spawnClient { actorHandler () };

Listing 2.3: Actor instantiation. actorHandler recursively defines the Actor behaviour for
each message. spawn spawns a process on the server, spawnClient on the client.

Channel-based Communication with Session Types

A more recent extension of Links are session types. They allow encoding a sequence
of message-passing-interaction in a π-calculus-like style. Distributed entities can then

11

2 Background Information

communicate via channels for which the communication protocol is specified and statically
checked. To ensure the session type statically, the cannel is not modified when used but
instead the read and write operation always return an updated channel for the next step
in the session type.

1 typename Add = [&| ?Int .? Int .! Int.End |&];
2

3 sig add : (Add) ~> ()
4 fun add (s) {
5 var (x,s) = receive (s);
6 var (y,s) = receive (s);
7 var _ = send(x+y,s);
8 ()
9 }

10

11 sig user : (~ Add) ~> Int
12 fun user (s) {
13 var (x, s) = receive (send (6, send (7,s)));
14 x
15 }
16

17 user(fork (add)) # 13

Listing 2.4: A simple distributed calculator example.

In the above example2, fork creates a new process executing add, which communicates
with user via a channel that first expects user to send two numbers, to which add then
responds with a number of its own (as specified by the session type ?Int.?Int.!Int.End).
The same channel cannot be used for all three operations, because the types would not
match. send therefore returns the channel one step further in the communication protocol,
and receive returns the next channel plus the received value. This way Links has both
Actor-style and channel-based distribution (although both could be emulated by the other
[41]).

2.3.5 Client-Server-Interaction

The primary goal of the Links language was to reduce the harsh borders between the “tiers”
of developing a typical web application, i.e. between database and backend and backend
and frontend.
For database access it provides a syntax to define and query tables in a relational

database system. Since this thesis focuses on user interface and frontend aspects, this is not
discussed here. But the communication between client and server, i.e. front- and backend
is the primary source for data in the client-side application, so of interest for Uselets.

To break the bounds between the tiers, one writes Links code as if everything happens in
the same tier. The language then handles communication. In most cases this happens by
providing the function twice, once as the Links version in the backend and once as a client
version as transpiled JavaScript. So, in most cases, no network communication will occur.

2For this and more examples, also see the Links repository

12

https://github.com/links-lang/links/tree/master/examples

2.3 Links

Some function cannot be executed on the client though, e.g. because they access the
database or other data that is private to the server. Additionally, functions can be explicitly
annotated to run only on the server or only on the client (see Code 2.5). This creates a
need for network communication.

1 fun serverOnly () server {
2 # This code is always executed on the server
3 }
4

5 fun clientOnly () client {
6 # This code is always executed on the server
7 }

Listing 2.5: Links functions annotated as client- and server-only.

Links creates a function stub for these cross-tier functions, which makes a remote-
procedure-call in continuation-passing-style, i.e. remainder of code that needs to be
executed after the RPC is sent with the request as encoded continuation. For example,
when a client calls a server-only function it encodes the handling of the return value as
continuation and sends a request with that continuation to the server. The server performs
the server-only actions and executes the continuation. Since the handling of the response
is client code again, a response is sent with the return value encoded into the continuation.
The client then carries on with the suspended execution in the continuation, now with the
return value from the server-function. All this is wrapped under the hood of the language
and opaque to the developers.

13

3 Uselets Example

Consider writing a simple todo-list application. For the purpose of this example it only
needs to offer the very minimum of functionality:

• It should have a header, delivered by an external designer.
• There should be a todo-list.
• The todo-list shows each todo-item with its completion status.
• Each item can be marked completed.
• There should also be a form to add new items.

The core idea of Uselets is to have easily re-usable components that allow us to compose
our application from off-the-shelf parts. We will begin by writing in a top-down approach,
assuming we have all the necessary parts available in some repository and then, realizing
that we do not, write those sub-components.

An user interface based on Uselets has two building-blocks: The components that create
the structure and messages that facilitate interaction. Clearly written requirements allow
us to deduce both: The structure is what is present, so e.g. the header and the todo-list
which consists of the items and the form. And for everything that can happen, i.e. adding
and removing items, there is a message.
The example discussed here will focus on the Uselet-part, using the standard tools

provided by the Links language to embed our todo-list into a webpage and handle client-
server communication.
With the knowledge that our app consists of a header and the actual todo-list, we can

begin:

1 var myApp = header <+> todoList ;

Listing 3.1: The todo-app, composed of a header and the actual list.

We here assume a header and a todoList component that we compose with the <+>-
combinator. Each Uselet application has a tree-structure with the Uselets as subtrees. The
<+>-combinator combines two Uselet-subtrees on the same level, i.e. as siblings.

1 (<+>): (Uselet , Uselet) ~> Uselet
2 (+ >): (XmlItem , Uselet) ~> Uselet

Listing 3.2: Type signatures of the Uselet combinators: <+> for composing Uselets as siblings,
+> to embed a Uselet in a piece of XML. Effect types parameterizing the Uselet type and the
function-arrow are omitted for clarity from here on.

Since we have neither the header nor the todoList component yet, we now have to
write these. Those components are representative of the two types of components a Uselet
system, or any UI for that matter, consists of, static and dynamic content respectively.
The todoList has interactive elements, so it is a dynamic component. The header on the
other hand never changes, so it is fully static.

15

3 Uselets Example

There are two primitives to create static content, textUselet for static text and
xmlUselet for arbitrary static XML/HTML. These static components make up the leaves
in the Uselet tree-structure.

1 textUselet : (String) ~> Uselet
2 xmlUselet : (Xml) ~> Uselet
3

4 uselet : (
5 String ,
6 model ,
7 (Ctx) ~> (model , message) ~> model ,
8 (Ctx) ~> (model) ~> Uselet
9) ~> Uselet

Listing 3.3: The signatures of the Uselet constructor-functions.
textUselet to construct static text
xmlUselet to construct static XML
uselet to construct dynamic Uselets
Effect types are omitted for clarity.

The idea is that the developer working on the interactive elements should not have
to care about static content. This is up to dedicated designers, who provide that kind
of content to embed, giving a clear boundary between application logic and interaction
aspects and presentation.
Assuming our designer has delivered a very simple header to fill our xmlUselet, which

in Links can be done with literal XML syntax, the header-component is complete:

1 var header = xmlUselet (
2 <header ><h1 >Todo -List </h1 ></ header >
3);

Listing 3.4: A static Uselet for the header.

We now move on from static content to the first dynamic part of the application: the
todo-list-component. For this we have to figure out the core aspects of any UI:

• What is the underlying data?
• How can a user interact with the data?
• And how is it structured internally?

For the list-component the underlying data-model is obviously a list of items. To
distinguish between checked and unchecked items we will use a pair of string, the content,
and boolean, the checked-status:

1 typename TodoItem = (String, Bool);

Listing 3.5: The type of a single todo-item: Its textual content and the checked-status.

Now to create the Uselet we have to provide the three components mentioned above plus
an additional name.

16

1 var todoList = uselet(
2 "todo-list", # name
3 [], # data
4 updateFn, # interaction
5 viewFn # structure
6);

Listing 3.6: The creation of the todoList.

We choose “todo-list” as name. The internal data-model is initialised with the empty
list, but defining todoList as a function that is passed some initial data is equally feasible.
Now it remains to provide the updateFn function for the interaction and viewFn to

produce the internal structure.
updateFn takes three parameters:

• The Uselets context (described in more detail in Sect. 4.1),
• the current model,
• and the incoming message that triggered this update.

The return value is the (possibly) updated model. For this reason, we refer to this function
as the “update-function”.

As described in the requirements, we have two possible interactions: Adding and removing
items. Using e.g. pattern matching we select the behaviour based on the incoming message-
type. When we receive our AddItem message, we prepend the new item, when we see
RemoveItem, we filter it out of our list. Any other message will be discarded and the data
remains unchanged:

1 fun updateFn (ctx) (model, msg) {
2 switch (msg) {
3 case AddItem(item) ->
4 (item, false) :: model
5 case RemoveItem(item) ->
6 filter(fun (i) { i <> item }, model)
7 case _ -> model
8 }
9 }

Listing 3.7: The update-function for the todo-list.

This is everything required in terms of interaction and data manipulation, allowing us
to move on to the rendering of the internal component structure.

Similar to the update-function, the view-function, viewFn, takes the Uselets context as
well as the current data-model. From that it produces a Uselet substructure. We refer to
this function as the “view-function”. The elements of this substructure are the descendants
of our todo-list in the overall Uselet tree.

As described in the requirements, we want to show all list items as well as the form for
creating new items.

17

3 Uselets Example

1 fun viewFn (ctx) (model) {
2 fold_left (fun (a, b) { a <+> b },
3 map(fun (i) {
4 # individual items
5 todoItem (i, fun () { ctx. toSelf (RemoveItem (i)) })
6 }, model)
7)
8

9 <+>
10

11 # form to add items
12 createItemForm (
13 # add -item - callback
14 fun (str) { ctx. toSelf (AddItem (str)) }
15)
16 }

Listing 3.8: The view function of the todo-list.

This we do using the standard tools of map and fold to produce a todoItem Uselet per
item and compose those together.

The components used here, todoItem and createItemForm both interact with the todo-
list component. Generally, interaction is facilitated through a Uselets context, which
provides the means to pass messages to e.g. other Uselets. If “todoItem” and “createItem-
Form” were dynamic Uselets created with the “uselet” function they will have their own
context for communicating with “todoList”. They are static ones though, so they do not
have their own context and rely on their parent Uselet to pass them a callback function
(the anonymous functions that call ctx.toSelf in the above example).

With that we have written all parts of our todo-list component and it remains to provide
the todoItem and createItemForm component.
As mentioned above they are both static Uselets, like the header, so we provide a

xmlUselet to fill with HTML provided by the assumed design team. Because these
components provide interaction, the designer must now attach the passed callback to the
interaction-endpoints in the HTML.
In Links this is done via attributes prefixed by ‘l:’.

1 fun todoItem ((str , checked), rmCallback) {
2 xmlUselet (
3 <li class ="{ if (checked) " checked " else "" }">
4 <input
5 checked ="{ if (checked) "true" else "false" }"
6 type =" checkbox "
7 l: onclick ="{ rmCallback () }"
8 ></input >
9 stringToXml (str)

10
11)
12 }

Listing 3.9: The markup for a single list-item.

18

Figure 3.1: The todo-application built with Uselets

The createItemForm is constructed analogously.
With that we have constructed our Uselet structure and can hook it into a page using

useletApp which spawns the Uselet-Actors and returns the initial XML/HTML. This can
be embedded into a page using the standard Links page keyword.

1 page <body >
2 { useletApp (" app", myApp , fun (_) { () }) }
3 </body >

Listing 3.10: Embedding of Uselets into a page in Links.

The useletApp again expects a name as the first argument followed by our Uselet
structure. The last parameter is for injecting additional values into the context, which we
did not use here.
This finalises the application logic, producing, after some styling from our favourite

designers, the application as shown in Fig. 3.1.
The application is extended further for comparison with the TodoMVC application [75],

an example application to showcase differences between MV* toolkits, in Sect. 6.2.

19

4 Uselets Concepts

With that we have seen how to build an application from Uselets, but why are things the
way they are, what are the underlying concepts and the high-level model, the previous
example is based on? This section will explore Uselets conceptually, its abstractions and
how they can be achieved in concrete implementations, the internal workings, and the
design rationale behind Uselets.

To understand the motivation behind some design decisions we first have to understand
what the important aspects of a UI are though, i.e. what development of UIs should focus
on. At its core a user interface serves to facilitate two things: It must provide some access
to its underlying data to a user. For a developer this means the data has to be structured
and then visualized. To ensure a clear separation of application logic, which includes the
structuring, and the presentation, i.e. the visualisation, Uselets focus on the structuring,
leaving the visualisation aspects to others by providing holes for them to fill as seen above.
Now that the user has access to the data, she will want to interact with the data. This is
the second thing a UI has to enable.
When developing UIs, this is exactly what a developer should focus on without having

to worry about too many internal details. So, tools, such as Uselets, should abstract
away low-level details and provide straight forward, boilerplate-free ways to define the
structuring and interaction.

Especially decomposing a system in smaller parts easily introduces additional overhead
and boilerplate, with a major aspect being the configuration and wiring of components.
With Uselets being component-based, and with the intent to support simple off-the-shelf
component re-use, it is important to minimize that overhead.

Taking a page from the playbook for distributed systems, this is achieved by basing the
Uselet abstraction on the Actor model for distributed systems [51]. In the Actor model, a
system is composed of Actors as the core primitive. An Actor is a self-contained unit and
can perform three actions:

• Send messages to other actors.
• Receive such messages and perform a behaviour according to it.
• Spawn new child Actors.

Each Uselets builds on top of an Actor that:

• Interacts with other Uselets via messages.
• When receiving a message updates its data.
• After updating the data creates its internal Uselet structure, “spawning” the Uselets
necessary.

So, there is a clear mapping from the actions an Actor can perform to all the actions a
Uselet performs.

Uselets build on top of Actors, so it is possible to develop the UI by essentially modelling
an Actor system. To remove the visualization aspect, the UIs structure is then inferred
from the structure of the Actor system.

21

4 Uselets Concepts

Figure 4.1: A Uselet hierarchy is built on top of an equivalent Actor hierarchy. In structure, the
resulting UI is equivalent to both.

It may need mention that the visual structure should be independent from the data-
structure of a UI, i.e. for web-applications, the HTML should not dictate how the application
looks or vice versa. Since the inferred structure in a Uselet system is the data-structure,
not the visual, this is enforced very strictly.

Arranging the Uselets in a hierarchy, a tree structure to be specific, therefore corresponds
to the first part of an user interface: The structuring of data. The other aspect, the
interaction, happens via messages passing. Uselets, or their underlying Actors, send each
other messages, treating each other as black boxes. The fact that Uselets don’t require
information or make assumptions about other Uselets gives us the simple composability we
desire.

This way we focus on the things that matter most: The structure of our application, via
composing Uselets in a tree structure, and the interaction, represented by the messages
accepted and sent.

4.1 Abstractions

The whole point of an abstraction is to hide away details that are not relevant for conceptual
creation of the application. This section outlines some of the aspects of UI development
that are abstracted away with Uselets. To minimize the gap between conceptual model
and concrete implementation, it also gives some general guidance on the implementation
of those aspects.
One of those details removed via Uselets is the actual UI. Programmers no longer

manually create e.g. HTML but instead compose components with the functionality they
need. This happens at every level of abstraction: At high-level components for user tasks
are combined. Consider for example the task of entering the data to sell a car. This
involves entering various information about the car, e.g. the VIN (Vehicle Identification
Number), colour, mileage, upload images etc. These sub-tasks can be separate components
which are then composed together, giving a EnterCarInfo-Uselet with components for
each of the sub-tasks as children e.g. a EnterVIN-Uselet, EnterColour-Uselet, etc. Each
of those components is built in the same way again: Composed of sub-components. Only
at the lowest level of this hierarchy, holes are left for the necessary HTML provided by UI
design experts.

22

4.1 Abstractions

To make this aspect of the Uselet model executable, i.e. provide a mechanism for
implementation, we utilize the hierarchy inherent in XML based interfaces such as web
pages: The structure of the Uselets is mirrored in the structure of the UI representation,
in HTML for example via custom elements for each Uselet with the sub-components as its
children (see Fig. 4.1).
With this the UI representation, i.e. the HTML, can be inferred from the modelled

Uselet hierarchy, down to the holes left to fill with concrete HTML. This removes the need
to manually construct the UI and then either programmatically fill it with the data or use
some sort of data-binding to make the underlying data visible.
In a concrete implementation of Uselets, it becomes necessary to label the Uselets to

identify them and their corresponding elements in the actual UI. The labelling must also
handle the re-labelling whenever the data, and thus the structure changes.
For this reason, the initial composition of Uselets can merely be an empty husk, that

has to be “filled” i.e. labelled upon system initialization. So when initializing the system,
i.e. just before hooking it into the actual page, the labels are assigned by passing a namer
through the composition of Uselets.
Therefore an uninitialized Uselet can be viewed as an unevaluated function that takes

the namer as an argument and, when called, returns the initial UI representation, the
HTML or XML, and spawns the underlying Actor that is responsible for updating it as a
side-effect:

1 typename Uselet = (Namer) ~> (Xml , Namer)

Listing 4.1: A Uselet is a function that takes a Namer and produces the initial Xml, the
updated namer Namer and spawns the underlying Actor as a side-effect. Effect types are
omitted for clarity.

Since a Uselet system is usually not a single Uselet but the composition of multiple ones,
it is necessary to return the updated namer as well, to pass it through to the next Uselet
in the composed system:

1 (<+>) = λ u1 , u2 → λ namer spawn’, spawn”−−−−−−−−−−→
2 let (html ’ , namer ’) = u1 (namer)
3 in let (html ’ ’ , namer ’ ’) = u2 (namer ’)
4 in (html ’ ++ html ’ ’ , namer ’ ’)

Listing 4.2: Combining two Uselets yields a new Uselet, i.e. a function that passes the namer
through the two originals and yields their combined HTML representation.

This whole scheme is very similar to the way Formlets [24] handle naming. But while
the forms used in Formlets were flat in structure, Uselets are composed in a tree-hierarchy.
Consequently, the naming scheme must accommodate that.

Labelling a tree is simple via either passing the namer breadth- or depth-first through the
tree. Since a Uselet-tree can change its structure due to some interaction and a resulting
update of the Uselet system, this is not possible here. Thus, we use a different, hierarchical
approach for Uselets.

The scheme described above, passing the namer from one Uselet to the next, is used for
siblings, i.e. elements in the tree structure with the same parent. When a Uselet is named

23

4 Uselets Concepts

though it maintains a “child-namer” in local scope. Such a child-namer can generate names
like the one used for the parent, but all generated names are now dependent on the parents
name.
This way all names are dependent on the position in the hierarchy, which means they

reflect the hierarchical nature of Uselets, and are unique. Since the hierarchy is used to infer
and create, and thus is equivalent to, both the UI representation, i.e. the HTML/XML,
and the underlying Actor hierarchy for message passing communication, these generated
names can be used as both identifier for the HTML/XML nodes and as addresses for the
Actors, giving the Actors their tree structure as well.

Writing the structure once in an abstract way and creating the equivalent structure
in the UI representation and Actor domain has the advantage that the system can have
different views: For those creating the model, none of those implementation details matter.
From the perspective of those concerned with the design of the application, one might argue
that the Uselet structure is the HTML structure while for those that define interaction,
and data manipulation, there is very little HTML or presentation involved; they see the UI
primarily as an Actor system. So, it becomes possible to model the UI entirely using an
existing and well established model, the Actor model, and then hand it off to be styled, yet
the designers don’t have to concern themselves at all with the underlying Actors system.
But the so inferred and named HTML/XML structure is but the initial representation.

It has to be updated whenever the underlying data changes, i.e. whenever a message is
received. To provide a high-level updating mechanism, the scheme used in Elm [29] is
adopted:
Messages are the only source of change in the system. Whenever a message is received

it potentially triggers a change of the underlying data. A change of the data results in a
change of the application structure and thus the UI representation. (See Fig. 4.2.)

Elm uses a virtual DOM update to transfer the changes made to the UI representation
to the actual UI, an approach adopted by the current Uselets implementations as well.
There may be some applications where either a virtual DOM update is not possible or a
full update is preferable or sufficient. In those cases, replacing the full UI with the updated
version is also quite feasible.

Uselets have the advantage, that, when a component updates, the changes to the UI
are restricted to only a specific part of the DOM. Since exactly and only one Uselet is
responsible for a part of the DOM with its children responsible for the sub-structure,
no overlap in responsibility exists between the components. This way, the virtual DOM
update, could be performed in parallel without the danger of interference. Furthermore,
the part of the DOM that needs to be inspected, is comparatively small, since the virtual
DOM update has to only look at the corresponding DOM elements for each Uselet, not
the whole page.

This overall scheme has the advantage that there a exactly two aspects that need to be
described: How the data changes and what structure its representation has. Everything
else is low level detail that is hidden away, which is exactly what the abstraction should do.

Additionally, in concrete implementations those two aspects can be described in a straight
forward, declarative fashion as mappings. The change of the data is a mapping from the
old to the new data, based on the message. Such a mapping can be represented as a simple

24

4.1 Abstractions

Figure 4.2: The update cycle of Uselets: When a message is received (1), the internal data (2)
is updated (3) and rendered as the Uselet substructure (4) a kind of blueprint for the UI. Using
virtual DOM update (5), the real UI is modified to reflect the changes.

function and is referred to as the “update-function”.
The “view-function” is the mapping from a snapshot of the underlying data to a Uselet

subtree. The subtree defines how the component is internally structured, i.e. how sub-
components are composed. In the hierarchical modelling, the view-function produces
exactly the children, i.e. the Uselets one layer lower than the current component.

Since these two mapping are sufficient to complete the update-cycle, writing a Uselet in
a concrete implementation is as simple as providing those two functions. Thus, modelling
the UI is just defining messages as triggers of change, outlining how the data is affected and
how the changes in the data affect the sub-structures. Since these steps translate directly
into a Uselet implementation, Uselets prune most of the low-level development details.
Additionally, the abstract specification of the UI can serve as documentation: With

message passing as the single way for communication and change, the messages fully
describe the interface of each Uselet.
This not only applies to inter-Uselet communication but to external communication

as well. For example, communication with the server, in the web-context via an AJAX
call, is hidden under a layer of message passing, giving a single unified interface for all
communication.
If the server side uses Actors as well, this means the whole system, client, server, and

potentially other clients, form a single distributed Actor system, which can be modelled in
a single cohesive model. Even client to client communication via the server is then possible
within this single conceptual model, it is just sending messages to yet another Actor.

25

4 Uselets Concepts

External communication partners have to be made available to a Uselet though. For this
a Uselet has a context, which can be extended. To extend this context implementations
can use the same mechanism used for naming proposed above, i.e. when initializing the
Uselets with the namer they also extend the context.

1 typename Uselet = (Namer , Ctx) ~> (Xml , Namer)

1 λ u1,u2.→ λnamer, ctx+ spawn1 spawn2−−−−−−−−−−→
2 let (html′, namer′) = u1 namer ctx+

3 in let (html′′, namer′′) = u2 namer′ ctx+

4 in (html′ ++ html′′, namer′′)

Listing 4.3: Uselets with the option to add context are functions that takes a Namer and
the additional context information Ctx and produces the initial Xml and the updated Namer,
while spawning the Actor as a side-effect. The additional context has to be passed to all Uselets
when combining them with the combinator, just as the namer has to be passed along.

The approach of viewing every part of the system as an Actor extends to user interaction
as well: All User interaction results in a message being sent to the system, which in turn
triggers the update-cycle described above.
Conceptually one might argue that the user herself is then no more than an Actor in

the Actor model sense, passing messages to the system to facilitate interaction. This does
however raise a question whether conceptually the message is then sent from the user or
from the Uselet that binds the message passing. The answer has some implications for
implementations: If trying to type the messages sent between user and Uselets, e.g. using
session types, one would have to give a type to the user. The user is not part of the system
though, so there is no point in the code, where one could annotate the users message-type.
Additionally, the translation from DOM event to message has to happen somewhere within
the system. This is the point where the type-annotation will have to be, but that leads to
a mismatch with the conceptual view, that the user is an external Actor.

Regardless, from the perspective of a Uselet there are the following potential recipients
for messages, or acquaintances [50], available from its context (similar to e.g. [63]):

• external Actors, e.g. the proxy-actors mentioned above
• the Uselet itself
• the Uselet’s parent
• the Uselet’s children
• any specific Uselet for which the address is known

In a concrete implementations Uselets have the option of directly sending messages to
one of these recipients or broadcasting to all Uselets or Actors in the system. Broadcasting
obviously imparts a certain overhead, since not all Uselets have behaviour for all messages
but would receive them anyway. But this is necessary so that Uselets do not require manual
wiring for composition or any information about their potential communication partners
and environment. (There may be some mechanisms to reduce the number of messages sent,
see Sect. 9.1)

26

4.1 Abstractions

The fact that a message can trigger a change in the Uselet tree is also a challenge for
implementations. Sending a message to a component that is removed immediately after is
undesirable. But missing sending to a recently spawned component is equally bad.

Since Uselets are hierarchical and a message can always only trigger a change in a subtree,
it is sufficient though to send broadcasted messages top-down through the layers of the
tree, waiting for a layer to complete its update-view-cycle. Since that means that a parent
always receives, and thus updates, before its children, the subtree is already updated when
the components in it receive the message.
Directed sending does not have these issues, but is mostly only relevant when a Uselet

communicates within a well-known substructure, usually only sending to itself and its
children.
One can argue that broadcasting is akin to public in an object-oriented setting, as this

is what the environment sees and has access to, while direct messaging is a fairly liberal
protected.
Regardless of whether they are broadcast or directed, in the current implementations,

messages are always sent through a dispatcher (cf. [35]). This is an approach advisable for
a number of reasons:

• The sending order mentioned above, parent before child, can be enforced since the
dispatcher knows the structure of the system.
• It enforces unidirectional dataflow: Every message flows exactly only from source,
through the dispatcher, to the target.
• This makes the dispatcher the starting point for debugging, since, as mentioned
above, all change in the system is the result of a message and each message passes
through the dispatcher.
• Implementing a dispatcher is straightforward in languages with Actor-style concur-
rency; it is just another Actor that forwards messages. But it is also possible in
languages without Actors, e.g. JavaScript, allowing for more similar implementations
and fewer differences in usage. (See Sect. 5.3).

To be reachable via the dispatcher, Uselets register with it upon instantiation. This
could be used for life-cycle hooks in future iterations (see Sect. 9.1).

This also works as an alternative way of adding external communication partners. Instead
of being available in the context, they register with the dispatcher with a certain address, to
which messages can be sent. This enables things like e.g. service-discovery or hot-swapping
at runtime or replacing them with mock-actors for testing purposes.
This is however only one messaging scheme for concrete implementations. It is equally

possible to use the references to parent and children from the Uselets context to pass
messages along the tree structure. This does make broadcasting more challenging though,
since broadcast-messages will have to propagated through the whole tree along its structure.
In general though, Uselets as a model do not make assumptions on how messages are sent.

27

4 Uselets Concepts

4.2 Usage Methodology

With the abstractions provided by Uselets, building an application from them can be done
by modelling the system similar to how one would model an Actor system. While, in
principle, developers have all the freedom the model leaves to experiment with, certain
aspects of a Uselet system can and should follow a certain methodology. This section
will recommend a number of systematic approaches for common modelling and design
scenarios.

From textual requirements to Uselets

The first step when modelling a Uselet-based application is to identify what components
are required and how they communicate, i.e. create the parts that make up the model
A good first approach here is to identify everything present in from the requirements

documentation. This should happen in a top down approach: Beginning with the individual
tasks and operations that need to be performed, followed by their arrangement in sequence
or parallel. Moving one layer of abstraction down, the sub-task of this first batch need to
be identified following the same procedure. This process is repeated until either the model
is fully complete or has reached a satisfactory level of with the remaining sub-structure are
up to the developers of the concrete implementations.
In a second step the modeller can then identify which of the components have to be

newly created and which can be reused, either within the project or from an external
repository of components.
This approach is not specific to Uselets but can be applied to most component-based

frameworks and libraries.
A bit more specific to Uselets is the modelling of the interaction. Since every interaction

happens via a message, everything the requirements describe to happen should have a
message. Again, developers may try to consolidate redundancy and overlap within the
messages.

With the messages and components identified it remains to figure out which component
sends which message. This should be clear from what UI element triggers the interaction.
The Uselet that holds that UI element sends the message. Message may also not originate
within the system but from an external source. Likewise, some messages will be sent
outside the system, so their recipients need to be noted in this step as well.

Lastly it remains to define the effect of the messages in the message recipients. With the
structure, the messages, the behaviour per message, and external communication partners
defined, all parts of the Uselet system are then assembled.

Communication Patterns

Broadcasting the most common way for Uselets to communicate. This is because Uselets
should not make assumptions about their environment so they are easily composable in
any configuration.
Just like in a normal distributed system, broadcasting does incur a certain overhead

though, so directly sending is also possible.

28

4.2 Usage Methodology

Sending messages to a Uselet directly should only be done when the type and structure
of the recipient is well known. This is the case for example when a Uselet is sending
messages to its children. In this scenario a directed message is a kind of “private” message,
since it is only sent within the Uselet.
An alternative scenario for directed message sending is when the Uselet has previously

figured out all the relevant recipients e.g. via some form of WHOIS broadcast [30].
Such a WHOIS protocol would need to be implemented either in every Uselet or in a

single entity every message has to pass through, like the dispatcher above. So, this has to
be built in at the framework level and is not up to individual developers.

Communication from external sources to the Uselet system is always broadcasted to all
components, while messages sent from Uselets to those external communication partners is
always directed.

Since Uselets can simply discard messages, it is not harmful to send messages to Uselets
that do not know how to handle them. But proper recipients for the message are all those
Uselets whose underlying data is affected by the message. This of course depends on which
component holds the data, i.e. the data locality.

Data locality

Data locality, i.e. which data is held by which Uselet, should, in general, follow the principle
of the Information Expert, i.e. information should lie exactly in that component that uses
it [60].
Often times data is shared between components though, so identifying that single

component that holds the data is non-trivial. Duplicating the data is one possibility. Since
most messages, i.e. reasons for altering data, are broadcast, keeping the data in sync is
quite feasible, though not without challenges. When the data is retrieved from a server,
this is mitigated, since messages from the server, as the authoritative information source,
are always broadcast. But since the data-updates have to be part of every component that
holds that data it can lead to code duplication. So, having the data redundantly in the
application, lying in Uselets of the same type, is no problem, but sharing across different
kinds of Uselets is undesirable.

If parts of the data must be used by Uselets of different types, the data should be held
in an ancestor component and passed to the children. Within the hierarchy of Uselets it
should be placed at the lowest possible but highest necessary point, i.e. when multiple
Uselets require access to the data, their least common ancestor should hold the data and
give them access.

Access to that data can be for example by passing references, if the underlying language
supports that. An alternative is the passing of closures that return the data required.

Finite State Machines

One benefit of using Actors as the underlying abstraction for Uselets is that Actor behaviour
can be described as finite state machines. This does translate to Uselets as well: The

29

4 Uselets Concepts

Figure 4.3: The UML state machine for the ATM example, as created in [48].

current state of the internal data can be seen as the state of the FSM and the incoming
messages trigger transitions.

This means that the behaviour of an individual Uselet can be described as a single FSM,
and that of multiple Uselets by having parallel FSMs. This provides an alternative model
as starting point which can then be translated to the Uselet model. State machines are
reasonably easy to understand and can help non-programmers grasp the working logic,
which in turn can furthers customer-engagement and thus the quality and fit of the resulting
software.

Consider the example of an ATM (a common example case, cf. [9, 48, 86, 90]. Its
behaviour can be modelled as a Finite State Machine, as seen in Fig. 4.3. Assuming we are
trying to build a single ATM Uselet, the translation from UML state machine to Uselet is
straight-forward: The stable states of the state machine are introduced as a variant type or
an enumeration. They are the data-model of the Uselet. Activity states are functions that,
if branching, return an identifier for the next state. An alternative approach for activity
states, especially if they contain external communication, is to build them as service Actor
that executes the states internal behaviour when triggered via a message, i.e. the inbound
transition, and responds with a message as result, i.e. the outgoing transitions of the
activity state. The update function is equivalent to the transition relation in the FSM, see
Code 4.4.

30

4.2 Usage Methodology

1 typename ATMState = [| WaitCard
2 | WaitPassword
3 | WaitTakeCard
4 | Error |];
5

6 typename ATMMessage = [| InsertCard
7 | EnterPassword
8 | Cancel
9 | TakeCard |]

10

11 var atmModel = WaitCard ;
12

13 fun atmUpdateFn (ctx) (mod , msg) {
14 switch ((mod , msg)) {
15 case (WaitCard , InsertCard) ->
16 insertCard ();
17 WaitPassword
18 case (WaitCard , _) -> Error
19

20 case (WaitPassword , EnterPassword) ->
21 ctx. consortium ! VerifyAccount ;
22 AwaitVerificationResult
23

24 case AwaitVerificationResult (nextState) ->
25 if (nextState == 1)
26 WaitTakeCard
27 else
28 WaitPassword
29

30 case (WaitPassword , Cancel) ->
31 cancel ();
32 WaitTakeCard
33 case (WaitPassword , _) -> Error
34

35 case (WaitTakeCard , TakeCard) ->
36 takeCard ();
37 WaitCard
38 case (WaitTakeCard , _) -> Error
39 }
40 }

Listing 4.4: The ATM types, model, and update function.

Some modifications of the resulting code are sensible. The state of the Uselet can be
extended to hold necessary data, e.g. the card in the ATM example. Messages can be
parameterized to pass information around, the EnterPassword with the password for
example or the InsertCard message with the card.
External communication should be modelled as messages passed to the external com-

munication partner. In the ATM example an external entity “consortium” takes care
of password and account verification. It can be introduced as actor available in the
context. Instead of transitioning through the enterPassword activity state to either
WaitPassword or WaitTakeCard, the FSM would send a VerifyAccount message and

31

4 Uselets Concepts

enter the AwaitVerificationResult state. In this state the ATM accepts only messages
with the verification result, BadAccount and BadPassword, transitioning to the next state
accordingly.
The resulting Uselet models the behaviour of the ATM. It only remains to also give

some method of rendering for the missing view function.
One way is to create separate Uselets for each of the UIs that should be displayed in

each state, e.g. a component that requests the card, one for entering the PIN etc. and
switching between those in the parent ATM component (see Code 4.5).

1 fun atmViewFn (ctx) (mod) {
2 switch (mod) {
3 case WaitCard -> waitCardUselet
4 case WaitPassword -> waitPasswordUselet
5 case AwaitVerificationResult -> awaitUselet
6 case WaitTakeCard -> waitTakeCardUselet
7 case Error -> errorUselet
8 }
9 }

Listing 4.5: The ATM view function.

Because there are translations from other specification models, e.g. interaction diagrams,
to FSMs [48], this allows developers and non-developers to model their requirements in a
way most suitable for them and then transform them, in one or more steps, into ready-to-use
Uselets.

4.3 Key Benefits

With the concepts of Uselets outlined above, this section summarizes the key benefits
arising from Uselets for developing user interfaces.

Uselets allow developing UIs in an abstract way, based on the Actor model for distributed
systems. Basing the Uselet abstraction on Actors as well established foundation makes
understanding them easier, provides at least some basic tools support and simplifies porting
them to different languages due to the existence of Actor libraries or native language
support.
Uselets serve both as a conceptual model for abstract, implementation-independent

modelling, and at the same time also as implementation framework. The proximity of
those two helps creating implementations that actually reflect what was modelled.

Actors in the original model were the composable building blocks of the system. Uselets
too are easily composable, allowing developers to construct large applications from small,
understandable parts. Not only does this break up development of such large applications
into smaller work packages, which makes incremental development, and work in teams
simpler. It also sets the foundation for repositories of ready-to-use components that can
simple be downloaded and used.
Conceptually every part of the system, Uselets, user, and external communication

partners are all viewed as Actors, giving a single unified interface for all change in the

32

4.4 Visual Notation

system: Messages. Communication can then, with appropriate tooling or type systems, be
encoded and statically checked.
Change in the system can be described declaratively as a mapping from old data and

triggering message to new data. Again, with an appropriate tooling or types it may be
possible to statically check whether this mapping is comprehensive, i.e. whether each
interaction is covered.
Analogously, describing the mapping from data to the resulting substructure of the

Uselet can be done declaratively, yielding a tree structure for the application. Inferring
the UI representation, HTML for web-applications, eliminates the need to write UI code
manually. Ultimately though, designers will have to have control over the elements on
the page. This is done via explicitly placing “holes” for them to fill in the leaves of the
Uselet tree, creating a strict separation of application logic and presentation. Changes to
the tree are automatically propagated to the actual UI, removing a usually tedious part of
development.

4.4 Visual Notation

When implementing Uselets, writing them down is trivial, in that the code of the implemen-
tation language can serve as the specification of the Uselets. Usually before implementation
starts, there is a design phase though. In this phase the Uselet hierarchy should be
outlined, but the language that is ultimately chosen is not set yet. This section outlines
a visual notation that allows describing Uselets and their hierarchy without a specific
implementation and with the option to defer certain implementation details.

Fig. 4.4 shows an example of the visual notation with the key components:

1. Uselets are denoted as boxes with two sections. The upper section contains the
Uselets name. The lower section the data-type of the data-model. If a Uselet has no
data, e.g. because it is static, the lower section can be omitted.

2. A Uselet has ports for incoming and sent messages. Expected messages are noted on
ingoing arrows, sent messages on outgoing arrows. These arrows can be connected
to the message source or target, if it is present. Notes on the message describe the
behaviour of the update function for a message.
Private messages, i.e. those sent to the component itself, are usually implementa-
tion specific and not represented. Since most public messages are broadcast, they
commonly have no specified target.

3. To describe the hierarchy of Uselets, an outgoing, filled arrow points to the children
of the Uselet, i.e. the result of the view function. Since those are dependent on the
state of the Uselet, the outgoing arrow can branch with conditions attached to the
branches.

4. Since it is not just a single child but can be multiple, composed children, multiple
Uselets that are composed together to for a single descendant are connected by a
dashed line.

5. (not shown) To enable conditional composition and repetition, components that
are composed can be annotated with a circle and foreach or a square and an if

33

4 Uselets Concepts

;

Figure 4.4: Visual notation for Uselets

statement to signify that the component should be repeated respectively added only
when a condition holds.

34

5 Uselets Implementation

A number of details of Uselets, while outlined conceptually, remain implementation spe-
cific. The following section will describe the two provided implementations, in Links and
JavaScript, showcase some of those details, and discuss the differences. It will also introduce
testing and debugging of Uselets.

5.1 Uselets in Links

The original idea for Uselets came based on the challenges when developing larger user
interfaces with Links. So, the first implementation also was done in Links. Consequently,
many of the design decisions for Uselets were made with features of the Links language
in mind. Most notably, Links has built-in Actor-style concurrency, resulting in the Actor
model as the underlying model of the abstraction.
Uselets in Links are, exactly as described above, functions that take the namer and

contextual information and return the initial representation and the updated namer while
spawning the underlying Actor.

A namer in Links is a function that returns a name or “address”, which, in the current
implementation, is but a list of integers. The hierarchical nature of the addresses is encoded
in the structure of the list: The head of the list is the part that distinguishes siblings, while
the tail is the address of the parent. This is fully sufficient to label the Uselet tree and
makes figuring out the address of a Uselets parent trivial.

Access to the parent, children, and other associates is provided via each Uselets context.
Message are always sent via a dispatcher though, as described above. It can also include
additional Actors for external communication. These so called “service-Actors” act as
proxies and are passed in a record, a dictionary mapping from service-name to service-Actor.

It remains the responsibility of the developer to spawn those service-Actors during system
start-up and pass them to the Uselets. When this information and the namer are passed
to an individual, uninitialized Uselet it:

1. Creates a new address with the namer
2. From that address creates a child-namer
3. Constructs the full context from the passed and constructed information
4. Spawns the underlying Actor with the update behaviour
5. Creates the initial UI representation
6. Returns the initial representation and the updated namer

Creating the initial representation is done using the view-function, described above, with
the initial data-model. These two plus the update-function and a name are provided when
creating the Uselet, i.e. when creating the function. Those parameter are passed to a
factory function uselet that creates uninitialized Uselet instances.

35

5 Uselets Implementation

1 uselet : (
2 String ,
3 model ,
4 UpdateFunction (model),
5 ViewFunction (model)
6) ~> Uselet

Listing 5.1: The uselet factory function creates dynamic Uselets from their name, their
underlying data, an update-function and a view-function. Types are simplified, disregarding
effect-types. label

Uselets created with this factory-function are the dynamic ones. Static Uselets are
created with their own factory-functions, one for text and one for XML. These create
empty Uselet husks, i.e. functions that too take a namer and contextual information but
mostly ignore it and only pass it along when composed with other Uselets.

1 textUselet : (String) ~> Uselet
2 xmlUselet : (Xml) ~> Uselet

1 t ex tUs e l e t = λ t ex t → λ namer , ctx spawn−−−−→
2 (stringToXml (t ext) , namer)
3 xmlUselet = λ xml → λ namer , ctx spawn−−−−→
4 (xml , namer)

Listing 5.2: textUselet and xmlUselet both produce Uselets that ignore additional context
and pass the namer through.

Composition of Uselets uses binary infix operators that take two Uselets, two functions,
and creates a new one that passes along the parameters during initialization.
Along this binary composition operator there is a second infix operator to embed a

Uselet in a piece of XML. This is one of the few instances where the Uselet developer can
explicitly manipulate the UI representation.

This composition produces, as described above, an empty husk of uninitialized Uselets,
i.e. one large function that passes parameters through the underlying tree structure. This
function is called when the Uselets are embedded into a Page, Links type for web-pages as
they are sent to the browser. This is done with the useletPage function, which takes a
Uselet structure and additional contextual information and creates a Page containing the
Uselet-defined application. This page can then be used in conjunction with the standard
tools of the language to serve it to users. A similar function that merely produces the
initial XML without embedding into a page exists also.

When the page is passed to the client, Links spawns the Actors for updating the Uselets
based on the incoming messages. These Actors use the update mechanisms outline above
to keep the data model and its internal structure up-to-date. The actual DOM, the HTML
used by the browser, is updated using a virtual DOM library via the JavaScript FFI. The
XML representation of the Uselet structure is passed to that library, which determines the
necessary changes to keep the DOM in sync, and applies those.
Communication by message-passing is quite straight forward, as Uselets merely build

on top of the language message-passing. Additionally, the fact that there are no bounds

36

5.2 Uselets in JavaScript

between the “tiers” of the application, i.e. client-server-communication works the same as
intra-client or intra-server, allows for simple external communication, by simply calling
location-annotated functions.

Due to Links strong static type system with effect types, the type of the overall application
is very prone to become excessively long. Individual Uselets can be described with reasonable
types, by using open row types to leave some of the messages accepted unspecified: Only
a number of the messages accepted by that Uselet are specified as variant type, and a
wildcard signifies that other messages are also possible. But by composition these types
are combined into a variant type that combines the variants from all the Uselets in the
composed system. This quickly leads to large polluted types, that, while statically checked,
offer only limited value to developers.

5.2 Uselets in JavaScript

Using JavaScript to build Uselets, being a very different language to Links, results in
a number of differences and challenges. This section describes the provided JavaScript
implementation and its idiosyncracies.

While in Links Uselets built on top of the native Actor style concurrency, JavaScript is
inherently single-threaded. WebWorkers, JavaScript’s concurrency-mechanism, do provide
a form of concurrency with message-passing but the constraint that WebWorker threads
cannot manipulate the DOM proves a serious obstacle, since each Uselet should be able to
update its corresponding DOM subtree.

It thus becomes necessary to emulate the message passing. When using a dispatcher, this
is straight forward enough: Upon instantiation of a Uselet it registers with the dispatcher
with an address or name. When another Uselet wants to pass a message, it has to just pass
it to the dispatcher. The send call on the dispatcher is wrapped as closure, available from
the this reference. The dispatcher then looks up the correct recipient from the registered
Uselets and passes the message to its receive. By wrapping all this in closures local to
each Uselet, the whole mechanism of the dispatcher can be hidden away. With this the
messages can be enriched further in those closures with e.g. the address of the sending
Uselet for responses, without exposing these details to developers using Uselets. This is
the same mechanism used in the send-functions available in the Uselets context in Links,
leaving developers with an interface that looks very much the same as it does in Links (see
Code 5.3).

1 this.send(message , recipient);
2 this. broadcast (message);

1 ctx.send(message , recipient);
2 ctx. broadcast (message);

Listing 5.3: Message passing in JavaScript via local closures bound to the this-reference
(upper) and Links via the context (lower).

The definition of individual Uselets leverages JavaScript’s object-orientation. Uselets
written by developers inherit from a Uselet class and e.g. the contextual information of an

37

5 Uselets Implementation

Uselet instance, are members of the objects, available through the this reference.
This gives two ways of creating new Uselets: Either extend the Uselet class in classic

object-oriented fashion, with a new name, constructor etc., or call the Uselet constructor-
function and create an anonymous Uselet without its own class, just as instance of the
Uselet class (see Code 5.4).

Those two versions are directly analogous to the two variants in Links, creating a Uselet
by calling the uselet-function and assigning it to a variable versus writing a function, a
constructor, that internally calls the uselet-function, as if it were a super-call.

1 class MyUselet extends Uselet {
2 constructor () {
3 super(
4 ’my -uselet ’,
5 /* model */,
6 /* update function */,
7 /* view function */,
8)
9 }

10 }

1 const anonUselet = new Uselet (
2 ’anon -uselet ’,
3 /* model */,
4 /* update function */,
5 /* view function */,
6);

Listing 5.4: Named (upper) and anonymous (lower) Uselets.

The parameters for the Uselet constructor are, as in Links, described above: A string to
assign a name to the Uselet, an arbitrary internal data model, an update-function that
maps from the current data-model and an incoming message to the updated data-model,
and lastly the view-function producing the Uselet substructure from the data-model.

Static Uselets are created with constructor functions XmlUselet and TextUselet like in
Links. Since those have no dynamic elements to them, and thus the this-reference is of no
importance, their instantiation does not require the new-keyword, while the dynamic ones
do.

The lack of static type-checks in JavaScript allows overloading those constructors. The
constructor for XML therefore accepts both a string representation that is parsed into
desired XML and instances of the native JavaScript HTML-nodes. An optional parameter
allows passing additional attributes, most notably event-handlers for the HTML. This
is particularly relevant when the first argument is a string representation of the HTML,
where it is not possible to directly write the event-handlers.

Native JavaScript nodes are used to interface with the DOM for updates. They are
passed to a virtual DOM library, which, like in Links, takes care of diffing and updating of
the actual DOM. Since the real DOM is available in JavaScript, there is no need to use an
ID to identify the correct DOM nodes per Uselet, but instead they can be remembered by
reference in the scope of a Uselet. Vice versa the Uselet object can also be made available

38

5.2 Uselets in JavaScript

from the DOM-node by adding it as additional property to the node object. This eases
debugging; the developer can select a DOM node using the standard tools available in
JavaScript or browser tools and get access to the Uselet and its values from there.

Since JavaScript does not support custom infix operators, composition is performed by
functions. The asSiblings function is roughly equivalent to the <+> operator. It composes
Uselets on the same layer in the hierarchy. The main difference to the Links version again
results from the dynamically typed nature of JavaScript. While in Links the composition
is always binary, in JavaScript function can take an arbitrary number of arguments and
composes all of those. So, the function called with a single Uselet is just that Uselet. When
called with two Uselets it is the same as <+>, and when called with more arguments it is
like multiple applications of <+>.

1 asSiblings (uOne) //= uOne
2 asSiblings (uOne , uTwo) //= uOne <+> uTwo
3 asSiblings (uOne , uTwo , uThree) //= uOne <+> uTwo <+> uThree
4

5 childOf (elem , uselet) //= elem +> uselet

Listing 5.5: Uselet composition using asSibling for same-level composition and childOf
for embedding a Uselet in a HTML node.

As described in Sect. 4 and in the Links implementation, the result of Uselet composition
is the uninitialized Uselet skeleton, by the same mechanism, i.e. by Uselets being functions
that are not yet called. The initialization executes the naming scheme and fills in all the
contextual information. Unlike the Links implementation the return value of this functions
is just the generated initial HTML, but not the namer. The namer is a stateful, so since
it updates its state and maintains it internally, it is not necessary to return an updated
namer.
Since JavaScript does not provide Actor style concurrency, these functions of course

do not spawn processes to update the DOM. This all happens, as is JavaScript’s nature,
asynchronously by callback, but using the very same mechanism described above: When
the dispatcher signals that a message has been received the update function calculates
the updated data-model, which is then passed to the view function, which produces the
desired structure. This Uselet structure is passed to the external virtual DOM library,
which patches the actual DOM.

Triggers for this cycle are internal or external communication. External can be a DOM
Event, which usually is the result of a user interaction. Binding user interaction to
message sending can be done either manually, by attaching a function that calls the send
or broadcast functions or more declaratively e.g. by passing a mapping from event to
message as the second parameter of the XmlUselet constructor.

External communication depends on the exact communication type, where again “proxy-
Actors” serve to hide away the low-level details under a layer of simple message-passing.
These “Actors” in JavaScript of course are no real Actors but objects with a receive-function
that asynchronously perform a task, responding with a message on success.
Since the dispatcher, with the lack of a type-system, is agnostic as to what registers,

these communication-proxies can either be registered with the dispatcher under some name,

39

5 Uselets Implementation

or can, like in Links, be passed to the constructor as part of the additional contextual
information.

5.3 Implementation Differences and Challenges

With JavaScript and Links being fundamentally different languages, there are of course a
significant number of differences between the implementations. Additionally, since Uselets
are primarily a concept, originally based on Links, there are a number of challenges actually
implementing it in Links, but especially when porting it to a more imperative language
with object-oriented elements like JavaScript. The following section explicitly lists the most
important differences between the implementations, the challenges of the implementations,
and some additional notes for potential further implementations in other languages.

On the surface level there are of course a number of syntactical differences. These have
different origins, but usually either the lack of a language feature, like the missing infix
operators in JavaScript, or the addition of a language feature that allows some things to
be solved in a different, more idiomatic way, e.g. the use of object-orientation and the
resulting use of this instead of a dedicated ctx. Other differences include:

• Links uses the native literal XML syntax and its l-attributes for interaction and
messages, whereas JavaScript relies on the built-in node types and event listeners
with some additional syntactic sugar.
• Messages are dedicated variant types in Links, which are not available in the dynam-
ically typed JavaScript. Instead messages are simple objects that are dynamically
checked to have the appropriate fields.

While these of course decrease the cohesion of the Uselet programming model across
languages, they are rather minor. The fact that they offer familiar way of doing things
even helps with the cohesion within one language.
Ultimately these syntactical differences are minor though, resulting in very similar

user-code, as shown exemplary in Fig. 5.1.
Of much greater interest are the differences in the implementation of the Uselet framework,

since they showcase the challenges and offer examples on how to port Uselets to even more
languages.

As mentioned above the underlying concurrency model and options differ greatly between
the two languages used for this thesis. Since the Uselet abstraction is based on a concurrency
model, this is especially relevant. Links does offer easy to use Actor-style concurrency,
while JavaScript offers almost no concurrency at all. Since those are very much the ends
of the spectrum, it is fairly safe to assume that every other language will fall somewhere
between those two extremes.
For most languages that support concurrency, and even some that do not or only very

limited like JavaScript, Actor-libraries do exist. Building Uselets on top of those should
prove to be not much different than building Uselets on top of Links.
Since the purpose of Actors is primarily to detach application logic from presentation

and provide a single unified interface for communication, it is not necessary to bring the
full power of Actors when they are not natively available to begin with.

40

5.3 Implementation Differences and Challenges

1
u

s
e

l
e

t
(

2
"

to
do

-
l

i
s

t
"

,
3

[
]

,
4

f
u

n
(

c
t

x
)

(
mo

d
,

m
s

g
)

{
5

s
w

i
t

c
h

(
m

s
g

)
{

6
c

a
s

e
A

d
d

I
t

e
m

(
i

)
-

>
7

i
::

m
o

d
8 9 10

c
a

s
e

_
-

>
11

m
o

d
12

}
13

}
,

14
f

u
n

(
c

t
x

)
(

m
o

d
)

{
15

f
o

l
d

_
l

e
f

t
(

f
u

n
(

a
,

b
)

{
a

<+
>

b
}

,
16

m
a

p
(

f
u

n
(

i
)

{
i

t
e

m
U

s
e

l
e

t
(

i
)

}
,

m
o

d
)

17
)

18
}

19
)

(a
)
Li
nk

s

1
n

e
w

U
s

e
l

e
t

(
2

"
to

do
-

l
i

s
t

"
,

3
[

]
,

4
f

u
n

c
t

i
o

n
(

mo
d

,
m

s
g

)
{

5
s

w
i

t
c

h
(

m
s

g
.

t
y

p
e

)
{

6
c

a
s

e
’

A
D

D
_

I
T

E
M

’:
7

c
o

n
s

t
n

e
w

L
i

s
t

=
m

o
d

.
s

l
i

c
e

(
)

;
8

n
e

w
L

i
s

t
.

p
u

s
h

(
m

s
g

.
d

a
t

a
);

9
r

e
t

u
r

n
n

e
w

L
i

s
t

;
10

d
e

f
a

u
l

t
:

11
r

e
t

u
r

n
m

o
d

;
12

}
13

}
,

14
f

u
n

c
t

i
o

n
(

m
o

d
)

{
15

a
s

S
i

b
l

i
n

g
s

(
16

.
.

.
(

m
o

d
.

m
a

p
(

i
=

>
n

e
w

I
t

e
m

U
s

e
l

e
t

(
i

)
)

)
17

)
18

}
19

)

(b
)
Ja
va
Sc
rip

t

F
ig
ur
e
5.
1:

Ex
em

pl
ar
y
co
m
pa

ris
on

of
us
er

co
de

fo
r
th
e
Li
nk

s
an

d
Ja
va
Sc
rip

t
im

pl
em

en
ta
tio

n.

41

5 Uselets Implementation

Using the approach of a dispatcher and then even wrapping that in local functions (as
seen in Code 5.3) allows having a nigh identical interface even though no real message
passing happens. So, when Actors are unavailable altogether the approach used for this
thesis’ JavaScript implementation is a good starting point to emulate message passing.
Other techniques, e.g. for JavaScript using the built-in asynchronous events, may also
prove to be feasible.

This covers internal communication but message passing should act as unifying interface
for external communication and user interaction as well. For external communication proxy-
Actors, as described above, work for both native Actors and when Actor-like behaviour is
emulated.
In both implementations, Links and JavaScript, these proxy Actors work in the same

way: They accept messages, depending on the message perform an action, in this case
the external communication, and potentially respond with the response from the external
communication partner. Native Actors of course make the implementation easier, especially
when no additional overhead is necessary to communicate across domain-bounds, e.g.
client-server in Links. In this scenario, messages can be sent to those proxy-Actors, directly
or via the Dispatcher, and they respond with messages in turn.

When no Actors are available, those proxy-Actors are, as described above, mere objects
that provide a receive. This receive can be called directly with a message, e.g. when
these proxies are available to the Uselets via their context, or via the dispatcher, where
they register with a name. Internally they have to perform everything usually necessary
to facility external communication. Especially in object-oriented languages inheritance
can help hiding away these kind of details even further with a ProxyActor class that
provides all the low-level communication details and only has to be extended with the
domain-specific parts of the specialized proxy-Actor.

While the user in a Uselet application is conceptually an Actor too, this is not affected
by the presence or absence of Actors in the language. What is language-specific though
is the way user interaction is translated into messages. While Links uses its l-attributes,
which is very similar to many templating languages and quite declarative, the JavaScript
implementation relies on the standard way of attaching event listeners to DOM events.
Since event-listeners require a bit more understanding of JavaScript, the constructor allows
for an alternative way, using the attributes object to directly map from event to message
sent, as described above.
There are numerous templating languages with even binding (e.g. for [76, 44]); this

should be the primary mechanism to maintain declarativeness. If that is not possible, there
is no harm in using the tools the language provides, like the standard JavaScript event
binding. Added syntactic sugar, like the attributes object in the XmlUselet constructor or
Links’ l:-attributes can provide a reasonable compromise.

5.4 Testing

An important part for any software is testing it, which makes testability an important part
for software models and frameworks. For Uselets there are two important testing scenarios:

42

5.4 Testing

Uselets in isolation and in composition.
Both are greatly simplified by having messages as the single source of change in the

system: For unit test, i.e. testing a single component’s behaviour in isolation, the Uselet
in question can be initialised with a certain data-model, giving the pre-state. Then a
message or a series of messages is sent to the Uselet after which the data-model, i.e. the
post-state, can be inspected. Additionally, not only the data-model but also the resulting
UI representation can be assessed whether the result is the intended one.
The second testing scenario is a form of integration-test with other Uselets and other

external communication partners, like the server or other clients. Part of this testing can
be done exactly like unit testing: Bring the system into a pre-state, send messages, and
observe the state of the Uselets as post-state. Besides the post-state the interaction between
the composed components are also of interest. Since, with a dispatcher, the dataflow is
fully unidirectional through the dispatcher, observing the messages passing through there
allows checking the interaction.

All these tests can happen in a pure, headless test environment: No browser is required,
since the interfacing with the DOM happens by virtual DOM update, which can be omitted,
while proxy-Actors for communication with external data sources can be replaced with
mock-Actors.

Since messages are the single source of change in a Uselet application, there is no other
way the component can be updated than as the result of a received message, making it
sufficient to test the behaviour for each message or sequence of messages.
Code 5.6 shows an example of a test case using the rudimentary testing framework for

the JavaScript Uselets implementation.

1 describe (’ InPlaceEdit ’, () => {
2

3 describe (’ Initialization ’, () => {
4 const ipe = initUselet (new InPlaceEdit (’foo ’));
5

6 it(’ should start in display mode ’, () => {
7 assert (ipe.model. editable). toBe(false);
8 });
9 });

10

11 describe (’ Interaction ’, () => {
12 const ipe = initUselet (new InPlaceEdit (’foo ’));
13

14 it(’ should toggle editable and non -editable ’, () => {
15 const msg = new ToggleEditMessage ()
16

17 ipe. receive (msg);
18 assert (ipe.model. editable). toBe(true);
19

20 ipe. receive (msg);
21 assert (ipe.model. editable). toBe(false);
22 });
23 });
24 });

43

5 Uselets Implementation

Listing 5.6: A test case for the InPlaceEdit-Uselet using the rudimentary JavaScript testing
framework. describe and it describe the test cases, as done by some popular testing
frameworks. Access to a Uselets model and receive-function is restricted to testing-mode, as is
the stand-alone initialization with initUselet.

5.5 Debugging

If runtime errors occur regardless of testing, the messages as single source of change can
improve debugging as well: Reproducing an error is as simple as replaying the sequence
of messages up to the error. Storing and then replaying a sequence of messages not only
makes it easy to reproduce an error, it also allows jumping to an arbitrary point in the
history of the interaction that resulted in the error, allowing developers to inspect the
path that led to the problem. From that it is possible to perform different interactions to
determine, whether e.g. an earlier fault has repercussions for other interaction scenarios as
well. This yields a time-travel-debugger (TTD) for Uselets.

Due to the distributed nature of Uselets, and the fact that a message received possibly
rearranges parts of the Uselet-tree, it is unfortunately not as trivial to replay a sequence of
messages, as in a system with a single message-receiving entity, like Elm [26, 28]: Unless
done in the proper order, it becomes possible to send messages to entities that should not
receive them, e.g. when a Uselet is created before the message propagated through the
system, but it should have been after. Vice versa it is also possible to miss Uselets, e.g.
when they are only created due to message-induced changes in their parent.

There are multiple approaches: Extracting the full state of the system per message
and applying it again, when replaying. Or just logging the messages sent including their
recipient, and, for replaying, resetting the system to its initial state and sending each
message up to the desired point in the history. And of course, there is the possibility
of mixing those approaches, by storing the messages plus snapshots of the system in
certain intervals (say every 100 messages) to minimize the updates when replaying long
message-sequences (cf. [26]).

Extracting the state of a distributed system is a well-researched topic [12, 59] and, while
often still challenging, is not too difficult for Uselets, especially since the topology and
every member of the system is known to the dispatcher. So, the full snapshot of the system
can be constructed by the dispatcher by requesting the data of every registered Uselet
before resuming message-passing. The resulting snapshot is a tree of data-models.
Re-applying those models requires some care though, since a change in a component’s

data leads to a change of the component-subtree. Thus, the data has to be applied
top-down, from root to leaves, ensuring that each layer in the tree has completed its
update-view-cycle before moving on to the next layer. Additionally, message passing must
be put on hold for the duration of the model-application, so that no message can alter the
Uselet structure while it is fed the models.

The overhead of storing the data of the full system is mitigated in part by the distinction
between broadcast and single-cast messages. While for broadcast messages is necessary to

44

5.5 Debugging

take a snapshot of the full system, every component is potentially affected by the message,
for single-cast messages only the data of the exact recipient should be stored and re-applied.
Since the majority of messages is broadcast though, and each broadcast results in a

full snapshot of the whole application, this approach can quickly lead to large amounts
of data. The alternative approach of only storing the messages with the recipient lowers
the amount of data stored, but increases the workload for replaying: The state cannot
simply be applied but has to be re-constructed stepwise by applying each message up to
this point, one after the other, triggering the whole update cycle for each.

To ensure the Uselets are updated correctly the messages have to be sent in a top-down
approach, like the data is applied for the snapshot-method, ensuring the update cycle to
be complete and child components to be spawned before messages can be sent to them.
Again, since the dispatcher is aware of the application structure, this is not an issue.

The exact method for identifying the problems, when in a replayed state, then depends
on the underlying language and platform. For HTML, or web-based Uselets, the developer-
tools provided by modern browsers offer a good number of tools to inspect variables, the
call stack etc.

A proof-of-concept debugger using the first approach exists for the JavaScript implemen-
tation: When debugging every message sent between Uselets triggers the debugger to take
a snapshot of the system by extracting it from the Uselet registered with the dispatcher.
Selecting one specific state to apply, forces the data-model of each registered Uselet to
conform to the snapshot, triggering the update cycle for each, resulting in the whole system
being in the state it was when the snapshot was taken. Due to JavaScript’s single-threaded
nature, this can safely happen without any message, sent in the mean-time, interfering.

An overlay interface as shown in Fig. 5.2 in the browser allows interactively stepping to
specific states in the history.
The Links implementation suffers a little from its functional nature here, and the fact

that the Links language is still immature. Since the behaviour of an Actor is effectively a
suspended function execution, awaiting a message, and no way to extract the functions
parameters during that execution exists, a debugger has no way to extract a Uselets
data model. Conversely there is also no way to alter the parameters during execution, so
applying a state at an arbitrary point is not possible either. A mechanism where there is a
special message to force a Uselet into a specific state could be conceived, but the static
check of the message’s type would prevent this as well: Since the message would need to
hold the desired target state, to pass it to the Uselet, its type would have to allow every
possible model, i.e. unify those, which is usually not possible.
The second approach, storing only the messages, in order, with their recipients sounds

more promising. Since it requires intercepting every message in the dispatcher and resetting
the system to re-send a subset of messages, it would significantly increase the complexity
of the dispatcher, leading to its omission from the scope of this thesis.

45

5 Uselets Implementation

Figure 5.2: The debugger overlay with the message history on top of the TodoMVC application.

46

6 Case Studies

6.1 Kanban Board

To showcase a proper application built with Uselets, the following section will describe a
kanban board, created with Uselets.

A kanban board is a tool frequently used for e.g. agile software development. A physical
board usually consists of multiple columns marked on a surface or wall, where small cards
or post-its are hung and moved around. The digital equivalent too consists of columns
with text-blocks, and emulates physically moving them via drag and drop plus forms to
create new cards and edit existing ones.

The combination of keyboard and mouse-based interactions in such an application covers
the majority of possible user-actions for a web-application, making it quite suitable as a
case-study. This provides some non-trivial interaction scenarios for, what is typically, a
single-page-application.
Based on the requirements for a kanban-board, the list of Uselets in this application

consists of Uselets for the cards, the columns, and an overview of the available boards. To
allow the adding, and editing of cards, it is extended by a component for editing text in
place and a modal, i.e. a dialog box which can then hold the form for creating a new card.
Since, in a traditional webpage, the overview and each individual board are separate

pages, Uselets will have to support multi-page applications. This can be achieved with the
history API [17]. In the abstract hierarchy (Fig. 6.1), those individual pages are all on the
same layer, children of a Uselet that switches between the “pages”. The router-outlet
Uselet maintains the current path as model, rendering the view according to a routing-
function, i.e. a mapping from path to view. Instead of navigating via Links, navigation
is a message to that component, resulting in a change of the path. Via the history API
this path-change can be pushed to the browser history and vice versa, changes to the path
can trigger messages. For the end-user it looks like she is transitioning between pages,
although it is just messages sent to the router-outlet component and an update of the
UI representation based on the routing-function.

Of those pages, the overview page is the simplest one. It is just a list of available boards
with the option to add a new one. All this can be achieved using standard Links and loops
in the XML literal syntax. With Uselets it is a list-component, rendering a repetition of
content, in this case a links to the individual boards. Such a list component is a common
UI element and it is not unlikely that different flavours of lists would be available pre-made.

The pages for the individual boards are more complex. They consist of column-Uselets
which in turn are composed of Uselets for each card, which contain in-place-edit Uselets
to enable editing of the card text. The static composition is still fairly trivial; at the
highest level is a list of columns, i.e. re-use of the list-component. Within the columns are
lists of cards. Getting that to look like columns and cards is not part of the Uselet-based
development but is delegated to the designers.

With the general structure layed out, the Uselets now have to send messages to facilitate

47

6 Case Studies

(a) Abstract hierarchy of the router. The current path is the model, which is altered by incoming
NavigateTo messages. The children of the router are the individual pages, selected by the
routerFunction.

1 fun routerOutlet (routingFunction , initialPath) {
2 uselet (
3 "router - outlet ",
4 splitAt (’/’, initialPath),
5 fun (ctx) (mod , msg) {
6 switch (msg) {
7 case NavigateTo (path) ->
8 historyPushState ((), "", path);
9 splitAt (’/’, path)

10 case _ -> mod
11 }
12 },
13 routingFunction
14)
15 }

(b) A concrete Links implementation. The model is a string array of URL sections, the update-
function consumes a NavigateTo message for navigation, the view-function uses the provided
mapping from path to Uselet. historyPushState uses the JavaScript FFI to modify the browser
history.

Figure 6.1: The router-outlet component for single-page routing

48

6.1 Kanban Board

interaction. As common for single-page applications, the form for creating new cards is
inside a modal, a pop-up dialog box. This is a good example to show the difference between
broadcasting and direct message sending: Opening and closing of the modal happens, of
course, via a message. This message cannot be broadcast, since there may be multiple
modals on the page, which would all react to the message. Since the message only affects
the modal itself, it can be sent via direct-sending back to the Uselet itself, triggering the
desired behaviour without affecting other modals.

When submitting data with the form in the modal, the data is sent to some external API
service. The response from that API service is broadcast, so that every component that
relies on data from that API can update accordingly without the need for some subscription
mechanism. Removing happens analogously.
Editing in place is very similar to use of a modal: A private message has to be sent to

the component for in-place editing to toggle between editing and display mode. When
committing an edit, the change to the data has to be sent to an API again, with the
response broadcast.
Drag and drop functionality, while widely supported in the JavaScript world with a

dedicated API, is still somewhat challenging in Links. The common way is to store the
element that is being dragged when the mouse is pressed, and switch it with or insert it
before the element under the cursor when the mouse is released. This can be used for
Uselets as well, but it is not necessary to rely on the DOM elements. Instead we can
use e.g. the index or an ID of the elements dragged and dropped on. Since not at all
times an element is dragged, the model has an option datatype for storing the dragged
element, containing Nothing when no interaction takes place and Just the id or index
when dragging. With the use of the history API the dragging and dropped element, index
or ID could be made available from the triggering DOM event. Then there is no need to
pollute the data-model with interaction specific data.

This, and some static content, yields the full hierarchy as seen in Fig. 6.2, and encoded
in Links the kanban application. With some styling, this gives us a proper web app
application as seen in Fig. 6.3.
Generally, the resulting application performs as specified. There are some quirks in its

behaviour though. For example, when entering text into an input and then triggering a
message elsewhere, it is possible for the input to lose focus when it it part of the Uselet
sub-tree that is restructured as part of the update. The virtual DOM update cannot always
just adjust the attributes and properties of the input, resulting in a re-creating. The newly
created input then does not have the focus.
When extending drag-and-drop to update a cards position while it is being dragged, it

may end up somewhere, where it should not be. This happens when dragging and dropping
cards very quickly: JavaScript’s asynchronous nature can have the events and thus the
messages not necessarily in the order one would expect, resulting in the odd positioning of
cards during dragging.
But with use of the proper APIs for drag-and-drop and future improvements to the

DOM-update-algorithm, those are but temporary challenges.

49

6 Case Studies

Figure 6.2: The overall hierarchy of the Uselets in the kanban application.

50

6.2 TodoMVC

Figure 6.3: The kanban application after styling.

6.2 TodoMVC

This second case study focuses on comparing development with Uselets to the use of other
frameworks and libraries. It does that by implementing TodoMVC [75], a todo-application
with exactly this goal: Comparing different implementations using the same application.
This application uses the JavaScript Uselets-implementation for better comparability with
the frameworks and libraries TodoMVC has been implemented in before.
The application itself is a basic todo-app, not unlike the one built as the introducing

example 3. Next to the functionality built, i.e. adding and removing items, we have to add
some more features to create a proper copy of TodoMVC:

• Todo-items exist in both checked and unchecked state and can be toggled between
those.
• Additionally, all items can be toggled at the same time. If one or more items are not

checked, all items are marked as checked. If all items are currently checked, they are
all unchecked.
• The content of an item can be edited in-place: Double clicking it replaces the displayed
text with a text field that contains the list item. The text can then be edited and
the changes are committed with the return key.
• There is an indicator for how many of the items are not yet marked completed. The
indicator distinguishes between one “item” and multiple “items”.
• List items can be filtered by their status: Either all items are displayed, just those

51

6 Case Studies

Figure 6.4: The Uselet hierarchy for the TodoMVC application.

checked or just those unchecked.
• All checked items can be removed at once.

Based on this description we can now extend our previous list of necessary components.
For the full TodoMVC application we then need the following components, arranged as
shown in Fig. 6.4:

• The todo-list component as collective parent
• A form for adding items
• The component for the individual list items
• A component for editing text in-place
• The filter selector
• An indicator for the number of unchecked items

The added interaction options of course also mean additional messages, yielding the
following list of messages and interactions for the full TodoMVC. (Some of the messages
could be parameterized to consolidate multiple messages into one. To maintain a direct
mapping from requirements and interactions to messages, this is not done here.)

• AddItem for adding new items to the list
• RemoveItem for removing items
• MarkChecked to mark an item as completed
• MarkUnchecked to unmark an item
• FilterAll To set the filter to show all items
• FilterChecked To set the filter to show only checked items
• FilterUnchecked To set the filter to show only unchecked items
• RemoveAllChecked clears all items that are currently marked completed
• ToggleAll toggles the completion status of all items

52

6.2 TodoMVC

(a) Original version (b) Uselets version

Figure 6.5: Comparison of the TodoMVC implementation using Uselets with the original TodoMVC
version.

• ToggleEdit switches between editing a text in-place and just displaying it
• UpdateItem commits the changes to an item

In the lists of components and interactions we can already find a component that we have
previously written, namely the one for editing a text in place. In larger project reuse of
components can be even broader, with common interaction and UI patterns, e.g. draggable
lists, navigation-drawers, menu-bars, etc.

Implementing all the components that cannot be found in previous projects or repositories,
we can compose the TodoMVC application, wiring together all communication.

Ultimately, this yields an application that provides the same functionality and, some mi-
nor graphic differences aside, is visually nigh identical to the original TodoMVC application
(see Fig. 6.5).

But while the appearance and functionality is the same as the many existing versions,
some fundamental differences can be found. This starts with the amount of source code
necessary for writing the application, as seen in Tab. 6.1 1. The majority of inspected
implementation requires developers to write more code to achieve the same functionality.

Most notable exceptions are the version using jQuery, which has the disadvantage though
that it does not abstract and developers must write e.g. UI updates by hand. The
second exception is Angular2, which is written in TypeScript. Both, TypeScript code and
generated JavaScript, are shorter than the version using Uselets. For the JavaScript code
this is in part because, as generated code, it is written very compact but unfortunately not
very legible. Angular2, and some other frameworks, require a build system though, which
developers not only have to install but also to configure, adding a considerable overhead.

1As measured by CLOC http://cloc.sourceforge.net

53

http://cloc.sourceforge.net

6 Case Studies

LOC
JavaScript 241

JavaScript ES6 347
jQuery 171

Angular 256
Polymer 383

React 379
Angular2 112
Closure 631

Elm 434
Uselets 247

Table 6.1: Number of source lines of code to build the TodoMVC application for plain JavaScript,
some popular frameworks, and some transpiled languages.

The Uselet implementation on the other hand is just the Uselet library code, the
components, and a few lines to set up the application. All this can be imported either via
the traditional script-tag or the recent addition of HTML imports [18]. This means Uselets
have less setup overhead than transpiled languages, provide higher abstraction than the
vanilla implementations, and needs less code than other comparable frameworks.

The Uselet code is exactly the components and messages we deduced from the require-
ments. The messages do take up more space than absolutely necessary, since there are
dedicated constructors for them, although they could be created and used in literal object
notation. Some of the transpiled languages have the advantages of more concise syntax,
e.g. infix operators or a short notation for UI elements, which, when applied to Uselets,
could reduce the amount of code even further. The only line that is not an Uselet or a
message is the one hooking the Uselets into the page.

In terms of generated UI code, Uselets have the advantage over the competitors that it
relies on custom elements, which gives the HTML elements semantic information without
polluting the markup with classes etc. This also affects the stylesheet, although not
significantly: Usually the HTML has to contain a number of classes to serve as selectors
for the CSS, with some shallow nesting. Tag names could be used too, but they are often
ambiguous, hard to understand, and complex nesting is necessary to select the correct
elements. Since Uselets use custom elements, the tag names alone can serve as selectors,
e.g. the selector todo-list-item vs. .todo-list li used in other implementations.
Length-wise this changes little — at least for this example. When this replaces deeper
nestings, it should positively affect legibility and understandability though.

Those two case studies show that implementing web-applications using Uselets is feasible.
Not every form of interaction may yet be fully identical to the native APIs, but they are
possible. Rich interactive applications can be written just as well as more traditional
web-pages by emulating routing. While other frameworks may do certain things better,
the low-overhead, highly abstracted nature of Uselets makes them a viable alternative to
some existing tools.

54

7 Evaluation

Multiple criteria have been described in the literature to compare and assess the quality of
models and abstractions.
Uselets specify the behaviour of the application, so Meyers “seven sins of the specifier”

[65] or a version adapted to modelling tools should therefore be avoided. Ideally a model
is built in a way that sins like those are inherently prevented. Tab. 7.1 lists the sins and
whether they apply to Uselets.

The process of modelling a system first in an abstract fashion before a concrete im-
plementation is, while widely accepted as good practice. It has spawned a whole branch
of model-driven development processes. Selic lists a number of criteria for models and
abstractions used for such processes, that are necessary for their success. (See Tab. 7.2.)
Yet, model-driven development and other processes using high-level abstractions area

not very widely adopted. Some [84, 70, 87] have voiced criticism of some properties of
modelling tools that may limited their success. Since Uselets as an abstract view of an
interface serves that purpose, modelling the UI abstractly before implementing it, Tab. 7.3
lists some of the criticism voiced and how Uselets attempt to improve that.

55

7 Evaluation

Original formulation Do Uselets suffer from this sin and if not, how do they
prevent it?

Noise: The presence in the text of an element
that does not carry information relevant to
any feature of the problem.

Uselets model the interface and application logic with
exactly the important features: The interaction via
message passing and the structure of the application
based on the underlying data. Thus, noise is kept to a
minimum.

Silence: The existence of a feature of the
problem that is not covered by any element
of the text.

Based on the expressiveness of the Actor model, inter-
action should be fully covered. Since the UI represen-
tation is implicit in the Uselet structure, some visual
aspects may be challenging to implement.

Overspecification: The presence in the text of
an element that corresponds not to a feature
of the problem but to features of a possible
solution.

Uselets are meant as tool for creating solutions, so this
is deliberately the case.

Contradiction: The presence in the text of
two or more elements that define a feature of
the system in an incompatible way.

This can occur due to name clashes, i.e. when two
Uselets are specified using the same name but with
different behaviour or two messages carrying different
data.

Ambiguity: The presence in the text of an
element that makes it possible to interpret a
feature of the problem in at least two different
ways.

Since messages are defined by every developer for their
own Uselet and no name-spacing or similar mechanism
exists yet, name-clashes can occur when two messages
have the same name, leading to ambiguity and unex-
pected behaviour. Static checking of message types
in e.g. Links prevents them from carrying different
data, but this can still lead to unexpected behaviour,
when one component binds a message to some user
interaction that triggers multiple effects across the ap-
plication. The same thing can happen with messages
from external communication partners. As mentioned,
a mechanism like name-spacing messages, encoding the
senders address and checking it, etc. could prevent this
in future iterations.

Forward reference: The presence in the text of
an element that uses features of the problem
not defined until later in the text.

Uselets in no way enforce the order in which compo-
nents are defined, so forward referencing is possible.
Since Uselets are meant to be self-contained, their
description too should be self-contained. So, the de-
scription of a Uselet may forward reference other com-
ponents for outside communication but does not func-
tionally rely on their presence. Since communication
partners are treated as black-boxes, for the reader a
forward reference makes no significant difference, since
the referenced Uselet can be viewed as a black box,
too.

Wishful thinking: The presence in the text of
an element that defines a feature of the prob-
lem in such a way that a candidate solution
cannot realistically be validated with respect
to this feature.

Uselets are a model that can immediately be trans-
lated into executable code. Unless the model defines
impossible side-effects, everything described by Uselets
is implementable.

Table 7.1: Meyers “seven sins of the specifier” for formal specification [65] and how they apply to
Uselets or how the model inherently prevents them.

56

Abstraction As described in Sect 4.1, Uselets abstract away a considerable amount
of implementation details, allowing developers to focus on the two main
aspects of the user interface, interaction and structure.

Understandability Describing interaction between elements in the software system as mes-
sage passing should appeal to the intuition of many, since it is a concept
with real-world equivalents, e.g. sending mail. This should improve
understandability over some more complex communication concepts like
asynchronous HTTP requests, even-handling etc. In terms of the UI
representation, Uselets have developer-defined names which should reflect
the purpose of a component. This makes it easier to understand the
purpose of a component compared to some of the default HTML elements
that are generated from that.

Accuracy Since Uselets are directly translated into code the system performs exactly
as modelled. The structure of the model is reflected in the structure of
the UI representation and message passing for interaction is used in the
implementation as well.

Predictiveness Messages are the only change in the system, both in the model and the
resulting implementation, and the mapping of message to behaviour is
an integral part of the model, so a Uselet is quite predictable. Model
checking or similar verification methods (see Sect. 9.1) can even automate
this.

Inexpensive Because Uselets can immediately be translated into a working implemen-
tation - Uselets really are an nigh executable model - and the model strips
away many implementation details, the workload should be significantly
lower when using Uselets, although of course the time savings vary from
project to project. Especially when developing cross platform, and each
platform can deal with Uselets, each platform after the first only provides
only little work, since porting Uselets is easy.

Observability Creating an implementation that behaves exactly like the model makes
it straight forward to observe modelled behaviour in the implementation.
For Uselets messages as the single source of change are the items of
interest, and a debugger that traces the messages, like the TTD provided
(see Sec. 5.5) help with that.

Table 7.2: Some Quality criteria for software models [82] and how Uselets comply with them.

57

7 Evaluation

High Threshold: The modeller has to learn a
new language of method of specification.

While Uselets can be used for fully abstract specifica-
tion, they can also be used for concrete implementation,
evident in the provided implementations and examples.
Assuming a Uselet implementation is available in a
language known to the developer, there is only a very
little learning-overhead.

Low Ceiling: The modelling system is lim-
ited or conventional methods produce better
results

With the strict enforcement of separation of presenta-
tion and logic some of the generated UI code may prove
more challenging to style than code written specifically
for a design. So, with respect to rendering, Uselets are
constraining. By basing communication on the Actor
model with its expressiveness, in terms of interaction
Uselets should not prove constraining though.

Unpredictability: The connection between
model and actual result is difficult to under-
stand and thus unpredictable.

Since Uselets are designed as a highly executable model,
the resulting implementation behaves exactly as mod-
elled.

Lack of propagation of modification: Changes
of the model are not propagated to the system
or vice versa.

This aspect is dependent on the method used to cre-
ate the Uselets and the tool-support. Assuming a
dedicated, e.g. graphic, modelling tool with code gen-
eration for Uselets, abstract modelling is made simple
but the synchronization is up to that tool. On the other
hand, if Uselets are specified directly in the target lan-
guage, the result is more platform specific and less easy
to migrate but every change is immediately synched,
since the written specification is the application as
executable model.

System dependent and private models: The
models and their tools are proprietary or in
other ways restricting.

Uselets are based on the Actor model as a well-
established model. The provided implementations and
the languages they are built in are publicly available.
Since currently no dedicated tools exists for Uselets,
no issues with closed or proprietary systems exist.

Table 7.3: Common criticism of models and their tools, as summarized in [87]

58

8 Related Work

Uselets are far from the first approach to tackle all the challenges of UI development in
general and the web- or JavaScript based development in particular. In fact, especially
for web-based UIs, the number of frameworks, libraries, transpiled languages etc. is
tremendous.
They range from simple libraries, full frameworks (e.g. [76, 44, 36]) to transpilers for

either existing or completely new languages (e.g. [29, 31, 66]).
There may be all kinds of reasons for this, but one certainly is the complexity of modern

web applications; JavaScript as the web’s scripting language certainly was not intended
for many of the things it is used for today. Especially for DOM manipulation a myriad of
tools exists to hide away the imperative, low-level tools available in the language.

Another aspect of vanilla JavaScript frequently addressed by libraries and frameworks is
external communication, where the built-in tools require a good deal of boilerplate to set
up and use.
Both aspects have found their way into the Uselet-abstraction, with communication

being unified as message passing and the DOM manipulation being hidden away under a
virtual DOM.

Comparing Uselets with some of those existing tools shows a number of differences, e.g.
the size and overhead of their setup, ranging from simply linking some script to the page
(e.g. [76]) using the existing tools, to complete build setups with compilers or transpilers,
that allow more domain-specific tools and languages (e.g. [44, 36]). The former being
simple, while the latter usually requires a larger amount of configuration. Uselets fall on
the lower end of the spectrum requiring only a few imports [18] in both implementations,
keeping the setup overhead low.

With respect to their level of abstraction, there is also the full spectrum, some maintaining
low-level details (e.g. [44]) while others are considerably more abstract (e.g. [29]), with
Uselets of course being highly abstracted.

Especially the younger tools adopt a component-based approach ([44, 36, 34]), more or
less following the W3Cs custom-element proposal [16].

Some of these frameworks take a fairly light approach to interaction and communication,
providing simple wrappers for the common communication patterns, e.g. HTTP requests,
and a list of options for communication between components (e.g. [44]). Uselets on the
other hand require that all communication happens via message passing, making it a
somewhat more unified interface for developers and abstracting away more details of the
communication aspect. This way, the developer does not have to choose from a myriad of
communication patterns. The greater control of distinct communication methods is pushed
towards the translation from the different sources to messages in a Uselet system. Since
the proxy-actors, that perform this translation, can be imported or customized, the control
is not lost, but merely hidden away.

For facilitating user-interaction the majority of tools uses templating languages (e.g. [44,
36] etc.), where function-calls are bound to events in, usually, some HTML-like syntax.

59

8 Related Work

This is effectively the same mechanism as Links’ ‘l:’-attributes, so an interesting aspect
for synergy with Uselets: The application logic and structure are defined with Uselets and
then the interaction, i.e. the message sending, is bound to DOM elements in one of these
templating languages. It remains to see in future work, how easily Uselets can be adapted
to use pre-existing external templating systems.

Similar to binding events, those templating languages use data-binding to bring the values
from the application logic into the UI. Links, and with that the Uselet implementation
uni-directionally uses this mechanism too. Data-binding makes it easy to understand
the relationship between underlying data and actual UI. However, two-way data-binding
i.e. when user interaction is propagated to the application logic via data-binding as well,
often makes the application more complex since the source of change is not immediately
apparent.
An alternative approach alleviating that, namely updating a virtual DOM and then

patching the actual one, as also used by Uselets, has been popularized by React [36]. Reacts
flux architecture [42] also uses a Dispatcher to enforce unidirectional dataflow to get the
benefits described above (in section 4.1). In the flux architecture, the data updated as the
result of a message from the dispatcher is in so called “Stores” though, which are separate
from the actual UI components. This has the benefit that multiple components can share
the same Store but imposes a certain overhead since components and Stores have to be
connected.
By removing the writing of HTML or HTML-like syntax from everything except

xmlUselets, Uselets aim to prevent developers from adapting the application code in
a way that eases presentation or vice versa. This enforces the separation of logic and
presentation.
Packing data-model, data-update, and UI-generation into one package is used most

prominently by Elm [29], a web-language transpiled into JavaScript. Here an application
is roughly like a single Uselet, with data-model, update-, and view-function. In fact, it
served as one of the major inspirations for Uselets. In Elm the model is one large piece
of data for the whole application though. Composability is delegated to “reusable views”
[27] which are a kind of helper function that extracts certain aspects of the view function.
This however means that composability is exclusive to the view. The model and update
function still have to be written and updated whenever the view is altered, manually
or by composition. This also means that some knowledge of the internals of the reused
view is required, although the presence of a static type system does help. The theoretical
composability for the data-model is impaired by the fact, that the whole application always
has only one model, so every sub-model has to be integrated at top-level. It then also has
to be de-structured again to properly update it and to pass it to the correct part of the
view-function. Again, knowledge of the whole data-model is required.

Being built for web-apps, and thus on top of the single-threaded JavaScript, does make
it challenging to translate Uselets to Elm. In the opposite direction, with the similarity
between their internal logic though it is reasonable to see a Uselet system as the composition
of many small Elm UIs that communicate via message passing.
Evidently Uselets, each of the frameworks and tools outlined above, and many more,

have different focus. For Uselets the focus is very much on a component-based approach

60

with little overhead. And as with many tools and abstractions, this comes with certain
trade-offs, for Uselets most notably the fact that modelling the UI strictly as the Actor
system, it prevents the developer from arbitrarily adding parts that might make certain
visualisations easier.

This of course is a deliberate design choice to enforce strict separation of logic and
presentation. But that means that it is important to consciously choose what tool to use,
and to be aware of the trade-offs of all of these.
Uselets in particular, with message-passing as single, unified communication interface,

and the simple composability, should be considered for larger systems, that heavily rely on
communication, internal and external, and that have a lot of re-use potential.

61

9 Conclusion and Future Work

9.1 Future Work

Based on the implementations outlined above, there are a number of considerations to
further improve Uselets.
Life-cycle hooks (cf. [45]) for e.g. initialization, removal etc. could give developers the

tools to perform additional initialization or clean-up tasks. To maintain message-passing
as the only source of change in the system, this would mean that at those points in a
Uselets life-cycle it would receive messages to indicate e.g. initialization or removal, using
the standard mechanism to react to them.
The current implementation of the message passing requires every component to po-

tentially accept every message. Composing Uselets consequently quickly leads to very
large, polluted types. If it were possible to know at runtime whether a Uselet accepts a
message, e.g. via dynamic typing and pattern matching on the type or some form of a
“canReceive” function (similar to “canEqual” [73]), it would be possible to send messages
exactly and only to those that can deal with them (cf. [54]). This would greatly reduce
the type pollution mentioned above and the number of messages sent.

Because this would mean that the type of a Uselet now holds only exactly the messages
the Uselet accepts and sends, it would pose the, foremost philosophical, question, whether
the Uselet that facilitates user interaction is the entity that sends the resulting message, or
whether the user is a separate entity with its own type. The second view of course poses
the challenge of assigning a type to the User, an abstract entity outside the system.

This can be even more challenging, when describing Uselet interaction including the user
interaction with a type system like session types. This of course would give greater control
over interactions, their order and interplay, to the developer. But assigning a session type
to a user, one of the prime sources of non-determinism, would realistically degenerate into
a large choice of all possible interactions, negating most of the benefit of session types.
The benefit for inter-uselet and external communication remains though: Messages would
only be sent to communication partners that currently know how to handle them.
These are all improvements for the concrete implementations. Uselets are first and

foremost an abstract model though. To help with abstract modelling, tool support should
be improved. Specification tools for creating Uselets independent of every underlying
language are necessary, especially if they could be based on existing modelling languages
like the UML [72].
Algorithms for transforming other models, e.g. FSMs into Uselets, and then tools that

can apply such transformations, would also help, since those creating UIs would not need
to learn a new formalism or language and could instead rely on the models they already
know. Vice versa, algorithms and tools for transforming Uselets into other models can also
help embedding Uselets into the context of model-driven development and the eco-system
of existing standards, models, and meta-models.

63

9 Conclusion and Future Work

Other applications

While web apps are popular, the web certainly is not the only platform out there. While
there is much discussion, whether mobile, web, desktop etc. will dominate the future
application landscape [1, 10, 11, 15, 64] it certainly is a good idea to support other platforms
as well. This means porting the Uselet abstraction to more languages and other types
of UI representation, such as other XML based ones, object-oriented UIs etc., or even to
completely different UI concepts like 3D environments.
Other XML based user interfaces representations, e.g. FXML, XAML or SVG can be

created just like the HTML-based Uselets described in this thesis. Some aspects will have
to be changed, e.g. the virtual DOM based update mechanism. In many cases instead of
creating a diff and making only the necessary changes to bring the UI in the desired shape,
replacing the elements is sufficient. Removing and inserting UI elements programmatically
is functionality that should be available for all those XML based UI representations.
Another application that is also often XML based are scene graphs, which are the

foundation for many 3D applications. Here it is common practice to frequently redraw
the scene to show changes in the graph. A restructuring of the Uselet hierarchy and thus
the graph as corresponding representation due to a message and data-update is therefore
rendered anyway, without any additional work. Using Uselets for 3D application therefore
seems feasible enabling even more exotic user interfaces.
Ideally this leads to the point where tool support exists for either migrating Uselets

from one UI representation to another and from one language to another or for generating
a platform-independent model and generating the concrete implementations from that.
This would greatly reduce the work required for developing one application for multiple
platforms. It would also help with maintenance of such cross-platform applications, since
changes would only need to be made to the one original version which could then propagate
them to its derivates.

Verification

In the context of Uselets it might yet be possible to make certain assertions about User
interaction: All change in a Uselet system, including all user interaction, is the result of a
trace of messages. With that it may very well be possible to transform a Uselet- and thus
Actor-based UI into a format where standard model-checking techniques can be applied
([5, 13]) to make assertions about the UI. Transformation from Actor-based concurrency to
model-checking-compatible format have been described in the literature [32, 33, 55, 61]
and Uselets sit merely on top of an Actor system.
Properties of interest for the versification can be about the underlying data and the

messages, giving other developers using a Uselet some guarantees about the behaviour.
Alternatively, with an appropriate way to make propositions about visual elements, they
could make assertions about actual UI elements, interactions, and thus UX properties,
e.g. for navigation “The user always has a way to transition back to the start-screen”
(AG EF screen = start). Since the user in a Uselet is considered just another Actor that
sends a finite set of messages to the system, we could — in a way — model check the user

64

9.1 Future Work

interaction with the system.
Additionally, as described above, Uselet behaviour can be described and modelled state

machine. Integration with other models, like navigation structure and business processes,
with appropriate model transformation [58], gives a more comprehensive view of the whole
application, which can, again, be model checked.

65

9 Conclusion and Future Work

9.2 Conclusion

In this thesis I have introduced Uselets, an abstract model for web-based user interfaces
based on the Actor model. Uselets describe easily composable user interface components.
This eases development of large applications by breaking them down into smaller parts.
Such components could potentially be available off-the-shelf in repositories, reducing
development effort to finding fitting ones and composing them.

The simple composability is the result of each component being self-contained consisting
of the underlying data, a way to update the data, and to produce the structure of the user
interface.

The UI structure is inferred from the composition of Uselets, removing implementation-
and rendering-details of the UI representation from the model. The resulting UI is equivalent
to the Uselets in structure, meaning that each Uselet is responsible for exactly one part
of the actual UI. This has benefits for the updating algorithm, which in the provided
implementations is virtual DOM based. The elements inspected for diffing the actual DOM
to the target state are contained exactly within the elements the Uselet corresponds to,
reducing the usually high overhead of this approach. Additionally, since there is no overlap
in responsibility, the diffing can happen concurrently.

All communication, inter-Uselet, client-server, user-interaction, etc., happens by message-
passing, and message-passing only, giving a single unified interface throughout the whole
system. This also simplifies dataflow and assists with testing and debugging.
Not only are Uselets the conceptual model of the interface, but to minimize the gap

between model and implementation, Uselets also provide the framework for building the
UI. I describe two different implementations of Uselets, one in Links, a functional language,
and one in JavaScript as proof-of-concept. The differences between those implementations
showcase some of the challenges of implementing Uselets but also provide a point of
reference for future implementations in other languages.

The introducing example, two case-studies and some methodological notes demonstrate
how to use Uselets for modelling and implementing different kinds of applications.
An evaluation of Uselets with criteria for the quality of software models from the

literature as well as comparison with some existing frameworks for web-development,
especially component-based, puts Uselets in context. Finally, I suggested a number of
future improvements to Uselets, like life-cycle events or improved messaging, as well as
some alternative applications besides web-apps.

66

List of Figures
3.1 The todo-application built with Uselets . 19

4.1 A Uselet hierarchy is built on top of an equivalent Actor hierarchy. In
structure, the resulting UI is equivalent to both. 22

4.2 The update cycle of Uselets: When a message is received (1), the internal
data (2) is updated (3) and rendered as the Uselet substructure (4) a kind of
blueprint for the UI. Using virtual DOM update (5), the real UI is modified
to reflect the changes. 25

4.3 The UML state machine for the ATM example, as created in [48]. 30
4.4 Visual notation for Uselets . 34

5.1 Exemplary comparison of user code for the Links and JavaScript implemen-
tation. 41

5.2 The debugger overlay with the message history on top of the TodoMVC
application. 46

6.1 The router-outlet component for single-page routing 48
6.2 The overall hierarchy of the Uselets in the kanban application. 50
6.3 The kanban application after styling. 51
6.4 The Uselet hierarchy for the TodoMVC application. 52
6.5 Comparison of the TodoMVC implementation using Uselets with the original

TodoMVC version. 53

List of Listings

2.1 A Formlet for entering a date. It is composed from three inputs for integers
that are bound to the names day, month, and year, respectively. The yields
clause describes how the submitted data should be processed, in this case
passed to the Date type-constructor. 10

2.2 Rendering of a Formlet, using a simple handler function. Once rendered the
returned initial XML can be embedded into a page. 11

2.3 Actor instantiation. actorHandler recursively defines the Actor behaviour
for each message. spawn spawns a process on the server, spawnClient on
the client. 11

2.4 A simple distributed calculator example. 12
2.5 Links functions annotated as client- and server-only. 13

3.1 The todo-app, composed of a header and the actual list. 15

67

List of Listings

3.2 Type signatures of the Uselet combinators: <+> for composing Uselets as
siblings, +> to embed a Uselet in a piece of XML. Effect types parameterizing
the Uselet type and the function-arrow are omitted for clarity from here on. 15

3.3 The signatures of the Uselet constructor-functions.
textUselet to construct static text
xmlUselet to construct static XML
uselet to construct dynamic Uselets
Effect types are omitted for clarity. 16

3.4 A static Uselet for the header. 16
3.5 The type of a single todo-item: Its textual content and the checked-status. . 16
3.6 The creation of the todoList. 17
3.7 The update-function for the todo-list. 17
3.8 The view function of the todo-list. 18
3.9 The markup for a single list-item. 18
3.10 Embedding of Uselets into a page in Links. 19

4.1 A Uselet is a function that takes a Namer and produces the initial Xml, the
updated namer Namer and spawns the underlying Actor as a side-effect.
Effect types are omitted for clarity. 23

4.2 Combining two Uselets yields a new Uselet, i.e. a function that passes
the namer through the two originals and yields their combined HTML
representation. 23

4.3 Uselets with the option to add context are functions that takes a Namer
and the additional context information Ctx and produces the initial Xml
and the updated Namer, while spawning the Actor as a side-effect. The
additional context has to be passed to all Uselets when combining them
with the combinator, just as the namer has to be passed along. 26

4.4 The ATM types, model, and update function. 31
4.5 The ATM view function. 32

5.1 The uselet factory function creates dynamic Uselets from their name,
their underlying data, an update-function and a view-function. Types are
simplified, disregarding effect-types. label 36

5.2 textUselet and xmlUselet both produce Uselets that ignore additional
context and pass the namer through. 36

5.3 Message passing in JavaScript via local closures bound to the this-reference
(upper) and Links via the context (lower). 37

5.4 Named (upper) and anonymous (lower) Uselets. 38
5.5 Uselet composition using asSibling for same-level composition and childOf

for embedding a Uselet in a HTML node. 39

68

5.6 A test case for the InPlaceEdit-Uselet using the rudimentary JavaScript
testing framework. describe and it describe the test cases, as done by
some popular testing frameworks. Access to a Uselets model and receive-
function is restricted to testing-mode, as is the stand-alone initialization
with initUselet. 43

List of Tables
6.1 Number of source lines of code to build the TodoMVC application for plain

JavaScript, some popular frameworks, and some transpiled languages. . . . 54

7.1 Meyers “seven sins of the specifier” for formal specification [65] and how
they apply to Uselets or how the model inherently prevents them. 56

7.2 Some Quality criteria for software models [82] and how Uselets comply with
them. 57

7.3 Common criticism of models and their tools, as summarized in [87] 58

69

Bibliography

[1] Robbie Abed. Hybrid vs Native Mobile Apps — The answer is clear. Retrieved
January 30, 2018. 2016. url: https://ymedialabs.com/hybrid- vs- native-
mobile-apps-the-answer-is-clear/.

[2] Gul A. Agha. ACTORS - a model of concurrent computation in distributed systems.
MIT Press series in artificial intelligence. MIT Press, 1990. isbn: 978-0-262-01092-4.

[3] Gul Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. “A Foundation for
Actor Computation”. In: J. Funct. Program. 7.1 (1997), pp. 1–72.

[4] Joe Armstrong. Concurrency oriented programming in Erlang. Invited talk, FFG.
2003.

[5] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008. isbn: 978-0-262-02649-9.

[6] Mike Belshe, Roberto Peon, and Martin Thomson. Hypertext Transfer Protocol
Version 2 (HTTP/2). Tech. rep. 2015, pp. 1–96. doi: 10.17487/RFC7540. url:
https://doi.org/10.17487/RFC7540.

[7] Tim Berners-Lee, Roy T. Fielding, and Henrik Frystyk Nielsen. Hypertext Transfer
Protocol - HTTP/1.0. Tech. rep. 1996, pp. 1–60. doi: 10.17487/RFC1945. url:
https://doi.org/10.17487/RFC1945.

[8] Sam Birch and Alex Russell. Progressive Web Apps: Great Experiences Everywhere.
At Google I/O 2017. 2017.

[9] Michael R. Blaha and James E. Rumbaugh. Object-oriented modeling and design
with UML, Second Edition. Pearson Education, 2005. isbn: 978-0-13-196859-2.

[10] Jack Calder. HTML5 vs Native Apps: What’s best for 2016? Retrieved January
30, 2018. 2016. url: http://justcreative.com/2016/03/17/html5-vs-native-
apps-whats-best-for-2016/.

[11] Fred Cavazza. Mobile Web App vs. Native App? It’s Complicated. Retrieved January
30, 2018. 2011. url: https://www.forbes.com/sites/fredcavazza/2011/09/27/
mobile-web-app-vs-native-app-its-complicated.

[12] K. Mani Chandy and Leslie Lamport. “Distributed Snapshots: Determining Global
States of Distributed Systems”. In: ACM Trans. Comput. Syst. 3.1 (1985), pp. 63–75.
doi: 10.1145/214451.214456.

[13] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking. MIT
Press, 2001. isbn: 978-0-262-03270-4.

[14] William Douglas Clinger. Foundations of Actor Semantics. Tech. rep. Cambridge,
MA, USA, 1981.

[15] Mathilde Collin. Why desktop apps are making a comeback. Retrieved January 30,
2018. 2015. url: https://medium.com/@collinmathilde/why-desktop-apps-
are-making-a-comeback-5b4eb0427647.

71

https://ymedialabs.com/hybrid-vs-native-mobile-apps-the-answer-is-clear/
https://ymedialabs.com/hybrid-vs-native-mobile-apps-the-answer-is-clear/
https://doi.org/10.17487/RFC7540
https://doi.org/10.17487/RFC7540
https://doi.org/10.17487/RFC1945
https://doi.org/10.17487/RFC1945
http://justcreative.com/2016/03/17/html5-vs-native-apps-whats-best-for-2016/
http://justcreative.com/2016/03/17/html5-vs-native-apps-whats-best-for-2016/
https://www.forbes.com/sites/fredcavazza/2011/09/27/mobile-web-app-vs-native-app-its-complicated
https://www.forbes.com/sites/fredcavazza/2011/09/27/mobile-web-app-vs-native-app-its-complicated
https://doi.org/10.1145/214451.214456
https://medium.com/@collinmathilde/why-desktop-apps-are-making-a-comeback-5b4eb0427647
https://medium.com/@collinmathilde/why-desktop-apps-are-making-a-comeback-5b4eb0427647

Bibliography

[16] World Wide Web Consortium. Custom Elements. W3C Working Draft 13 October
2016. Tech. rep. World Wide Web Consortium, 2016.

[17] World Wide Web Consortium. HTML 5.3. Editor’s Draft, 24 January 2018. Tech. rep.
World Wide Web Consortium, 2018.

[18] World Wide Web Consortium. HTML Imports. W3C Working Draft 25 February
2016. Tech. rep. World Wide Web Consortium, 2016.

[19] World Wide Web Consortium. HTML Templates. W3C Working Group Note 18
March 2014. Tech. rep. World Wide Web Consortium, 2014.

[20] World Wide Web Consortium. Shadow DOM. W3C Working Draft 05 September
2017. Tech. rep. World Wide Web Consortium, 2017.

[21] Dominic Cooney. Introduction to Web Components. W3C Working Group Note 24 July
2014. Retrieved January 30, 2018. 2014. url: https://www.w3.org/TR/components-
intro/.

[22] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. An idiom’s guide to
formlets. Tech. rep. LFCS, University of Edinburgh, 2008.

[23] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. “Links: Web Pro-
gramming Without Tiers”. In: Formal Methods for Components and Objects, 5th
International Symposium, FMCO 2006, Amsterdam, The Netherlands, November
7-10, 2006, Revised Lectures. Ed. by Frank S. de Boer, Marcello M. Bonsangue,
Susanne Graf, and Willem P. de Roever. Vol. 4709. Lecture Notes in Computer
Science. Springer, 2006, pp. 266–296. isbn: 978-3-540-74791-8. doi: 10.1007/978-3-
540-74792-5_12. url: https://doi.org/10.1007/978-3-540-74792-5_12.

[24] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. “The Essence of
Form Abstraction”. In: Programming Languages and Systems, 6th Asian Sympo-
sium, APLAS 2008, Bangalore, India, December 9-11, 2008. Proceedings. Ed. by
G. Ramalingam. Vol. 5356. Lecture Notes in Computer Science. Springer, 2008,
pp. 205–220. isbn: 978-3-540-89329-5. doi: 10.1007/978-3-540-89330-1_15. url:
https://doi.org/10.1007/978-3-540-89330-1_15.

[25] Douglas Crockford. JavaScript: The world’s most misunderstood programming lan-
guage. Retrieved January 30, 2018. 2001. url: http : / / www . crockford . com /
javascript/javascript.html.

[26] Evan Czaplicki. Elm’s Time Traveling Debugger. Pause, rewind, and replay programs.
Debug by changing history. Retrieved January 30, 2018. 2014. url: http://debug.
elm-lang.org.

[27] Evan Czaplicki. Scaling The Elm Architecture. An Introduction to Elm. Retrieved
January 30, 2018. 2012. url: https://guide.elm-lang.org/reuse/.

[28] Evan Czaplicki. The Perfect Bug Report. Debugging with Elm 0.18. Retrieved January
30, 2018. 2016. url: http://elm-lang.org/blog/the-perfect-bug-report.

72

https://www.w3.org/TR/components-intro/
https://www.w3.org/TR/components-intro/
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/978-3-540-89330-1_15
https://doi.org/10.1007/978-3-540-89330-1_15
http://www.crockford.com/javascript/javascript.html
http://www.crockford.com/javascript/javascript.html
http://debug.elm-lang.org
http://debug.elm-lang.org
https://guide.elm-lang.org/reuse/
http://elm-lang.org/blog/the-perfect-bug-report

Bibliography

[29] Evan Czaplicki and Stephen Chong. “Asynchronous functional reactive programming
for GUIs”. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013. Ed. by Hans-Juergen
Boehm and Cormac Flanagan. ACM, 2013, pp. 411–422. isbn: 978-1-4503-2014-6.
doi: 10.1145/2462156.2462161. url: http://dl.acm.org/citation.cfm?id=
2491956.

[30] Leslie Daigle. WHOIS Protocol Specification. Tech. rep. 2004, pp. 1–4. doi: 10.17487/
RFC3912. url: https://doi.org/10.17487/RFC3912.

[31] Sébastien Doeraene. Scala.js: Type-directed interoperability with dynamically typed
languages. Tech. rep. Ecole polytechnique federale de Lausanne, 2013.

[32] Emanuele D’Osualdo, Jonathan Kochems, and C.-H. Luke Ong. “Automatic Verifica-
tion of Erlang-Style Concurrency”. In: Static Analysis - 20th International Symposium,
SAS 2013, Seattle, WA, USA, June 20-22, 2013. Proceedings. Ed. by Francesco Lo-
gozzo and Manuel Fähndrich. Vol. 7935. Lecture Notes in Computer Science. Springer,
2013, pp. 454–476. isbn: 978-3-642-38855-2. doi: 10.1007/978-3-642-38856-9_24.
url: https://doi.org/10.1007/978-3-642-38856-9_24.

[33] Jonas Eckhardt, Tobias Mühlbauer, José Meseguer, and Martin Wirsing. “Statistical
Model Checking for Composite Actor Systems”. In: Recent Trends in Algebraic
Development Techniques, 21st International Workshop, WADT 2012, Salamanca,
Spain, June 7-10, 2012, Revised Selected Papers. Ed. by Narciso Martı-Oliet and
Miguel Palomino. Vol. 7841. Lecture Notes in Computer Science. Springer, 2012,
pp. 143–160. isbn: 978-3-642-37634-4. doi: 10.1007/978-3-642-37635-1_9. url:
https://doi.org/10.1007/978-3-642-37635-1_9.

[34] Ralf Engelschall. ComponentJS. Retrieved January 30, 2018. 2009. url: http :
//componentjs.com.

[35] Facebook Inc. Flux. Application Architecture for Building User Interfaces. Retrieved
January 30, 2018. 2014. url: https://facebook.github.io/flux/docs/in-depth-
overview.html.

[36] Facebook Inc. React. A JavaScript Library for building User Interfaces. Retrieved
January 30, 2018. 2017. url: https://facebook.github.io/react/.

[37] Roy T. Fielding, Jim Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen, Larry Masinter,
Paul J. Leach, and Tim Berners-Lee. Hypertext Transfer Protocol - HTTP/1.1. Tech.
rep. 1999, pp. 1–176. doi: 10.17487/RFC2616. url: https://doi.org/10.17487/
RFC2616.

[38] Roy T. Fielding, Mark Nottingham, and Julian F. Reschke. Hypertext Transfer
Protocol (HTTP/1.1): Caching. Tech. rep. 2014, pp. 1–43. doi: 10.17487/RFC7234.
url: https://doi.org/10.17487/RFC7234.

[39] Roy T. Fielding and Julian F. Reschke. Hypertext Transfer Protocol (HTTP/1.1):
Authentication. Tech. rep. 2014, pp. 1–19. doi: 10.17487/RFC7235. url: https:
//doi.org/10.17487/RFC7235.

73

https://doi.org/10.1145/2462156.2462161
http://dl.acm.org/citation.cfm?id=2491956
http://dl.acm.org/citation.cfm?id=2491956
https://doi.org/10.17487/RFC3912
https://doi.org/10.17487/RFC3912
https://doi.org/10.17487/RFC3912
https://doi.org/10.1007/978-3-642-38856-9_24
https://doi.org/10.1007/978-3-642-38856-9_24
https://doi.org/10.1007/978-3-642-37635-1_9
https://doi.org/10.1007/978-3-642-37635-1_9
http://componentjs.com
http://componentjs.com
https://facebook.github.io/flux/docs/in-depth-overview.html
https://facebook.github.io/flux/docs/in-depth-overview.html
https://facebook.github.io/react/
https://doi.org/10.17487/RFC2616
https://doi.org/10.17487/RFC2616
https://doi.org/10.17487/RFC2616
https://doi.org/10.17487/RFC7234
https://doi.org/10.17487/RFC7234
https://doi.org/10.17487/RFC7235
https://doi.org/10.17487/RFC7235
https://doi.org/10.17487/RFC7235

Bibliography

[40] Roy T Fielding and Richard N Taylor. Architectural styles and the design of network-
based software architectures. University of California, Irvine Doctoral dissertation,
2000.

[41] Simon Fowler, Sam Lindley, and Philip Wadler. “Mixing Metaphors: Actors as
Channels and Channels as Actors”. In: 31st European Conference on Object-Oriented
Programming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain. Ed. by Peter
Müller. Vol. 74. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017,
11:1–11:28. isbn: 978-3-95977-035-4. doi: 10.4230/LIPIcs.ECOOP.2017.11. url:
https://doi.org/10.4230/LIPIcs.ECOOP.2017.11.

[42] Cory Gackenheimer. “Introducing flux: An application architecture for react”. In:
Introduction to React. Apress, Berkeley, CA, 2015, pp. 87–106.

[43] Jesse James Garrett. Ajax: A new approach to web applications. Retrieved January
30, 2018. 2005. url: http://adaptivepath.org/ideas/ajax-new-approach-web-
applications/.

[44] Google. Angular. Retrieved January 30, 2018. 2016. url: https://angular.io.
[45] Google. Angular. Lifecycle Hooks. Retrieved January 30, 2018. 2016. url: https:

//angular.io/guide/lifecycle-hooks.
[46] Irene Greif. “Semantics of communicating parallel processes”. PhD thesis. Mas-

sachusetts Institute of Technology, Cambridge, MA, USA, 1975.
[47] W3C HTML working group et al. XHTML 1.0: The extensible hypertext markup

language. Tech. rep. World Wide Web Consortium, 2002.
[48] Rolf Hennicker and Alexander Knapp. “Activity-Driven Synthesis of State Machines”.

In: Fundamental Approaches to Software Engineering, 10th International Conference,
FASE 2007, Held as Part of the Joint European Conferences, on Theory and Practice
of Software, ETAPS 2007, Braga, Portugal, March 24 - April 1, 2007, Proceedings.
Ed. by Matthew B. Dwyer and Antónia Lopes. Vol. 4422. Lecture Notes in Computer
Science. Springer, 2007, pp. 87–101. isbn: 978-3-540-71288-6. doi: 10.1007/978-3-
540-71289-3_8. url: https://doi.org/10.1007/978-3-540-71289-3_8.

[49] Carl Hewitt. Actors are intended to model *all* digital computation. Note by Carl
Hewitt on a discussion on Implementing the communication semantics of actors.
2015.

[50] Carl Hewitt. “Viewing Control Structures as Patterns of Passing Messages”. In:
Artif. Intell. 8.3 (1977), pp. 323–364. doi: 10.1016/0004-3702(77)90033-9. url:
https://doi.org/10.1016/0004-3702(77)90033-9.

[51] Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. “A Universal Modular
ACTOR Formalism for Artificial Intelligence”. In: Proceedings of the 3rd International
Joint Conference on Artificial Intelligence. Standford, CA, USA, August 20-23,
1973. Ed. by Nils J. Nilsson. William Kaufmann, 1973, pp. 235–245. url: http:
//ijcai.org/proceedings/1973.

[52] Ian Hickson, R Berjon, S Faulkner, T Leithead, ED Navara, E O’Connor, and S
Pfeiffer. HTML5 specification. Tech. rep. World Wide Web Consortium, 2014.

74

https://doi.org/10.4230/LIPIcs.ECOOP.2017.11
https://doi.org/10.4230/LIPIcs.ECOOP.2017.11
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
https://angular.io
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks
https://doi.org/10.1007/978-3-540-71289-3_8
https://doi.org/10.1007/978-3-540-71289-3_8
https://doi.org/10.1007/978-3-540-71289-3_8
https://doi.org/10.1016/0004-3702(77)90033-9
https://doi.org/10.1016/0004-3702(77)90033-9
http://ijcai.org/proceedings/1973
http://ijcai.org/proceedings/1973

Bibliography

[53] C. A. R. Hoare. “Communicating Sequential Processes”. In: Commun. ACM 21.8
(1978), pp. 666–677. doi: 10.1145/359576.359585.

[54] Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida, and Kohei
Honda. “Type-Safe Eventful Sessions in Java”. In: ECOOP 2010 - Object-Oriented
Programming, 24th European Conference, Maribor, Slovenia, June 21-25, 2010.
Proceedings. Ed. by Theo D’Hondt. Vol. 6183. Lecture Notes in Computer Science.
Springer, 2010, pp. 329–353. isbn: 978-3-642-14106-5. doi: 10.1007/978-3-642-
14107-2_16. url: https://doi.org/10.1007/978-3-642-14107-2_16.

[55] Mohammad Mahdi Jaghoori, Ali Movaghar, and Marjan Sirjani. “Modere: the model-
checking engine of Rebeca”. In: Proceedings of the 2006 ACM Symposium on Applied
Computing (SAC), Dijon, France, April 23-27, 2006. Ed. by Hisham Haddad. ACM,
2006, pp. 1810–1815. isbn: 1-59593-108-2. doi: 10.1145/1141277.1141704. url:
http://doi.acm.org/10.1145/1141277.

[56] JS Foundation. Dojo Toolkit. Retrieved January 30, 2018. url: https : / /
dojotoolkit.org.

[57] Rajesh K. Karmani, Amin Shali, and Gul Agha. “Actor frameworks for the JVM
platform: a comparative analysis”. In: Proceedings of the 7th International Conference
on Principles and Practice of Programming in Java, PPPJ 2009, Calgary, Alberta,
Canada, August 27-28, 2009. Ed. by Ben Stephenson and Christian W. Probst. ACM,
2009, pp. 11–20. isbn: 978-1-60558-598-7. doi: 10.1145/1596655.1596658.

[58] Alexander Knapp and Gefei Zhang. “Model Transformations for Integrating and
Validating Web Application Models”. In: Modellierung 2006, 22.-24. März 2006,
Innsbruck, Tirol, Austria, Proceedings. Ed. by Heinrich C. Mayr and Ruth Breu.
Vol. 82. LNI. GI, 2006, pp. 115–128. isbn: 3-88579-176-5.

[59] Ten-Hwang Lai and Tao H. Yang. “On Distributed Snapshots”. In: Inf. Process.
Lett. 25.3 (1987), pp. 153–158. doi: 10.1016/0020-0190(87)90125-6. url: https:
//doi.org/10.1016/0020-0190(87)90125-6.

[60] Craig Larman. Applying UML and Patterns: An Introduction to Object Oriented
Analysis and Design and Interative Development. Prentice Hall, 2005.

[61] Steven Lauterburg, Mirco Dotta, Darko Marinov, and Gul A. Agha. “A Framework
for State-Space Exploration of Java-Based Actor Programs”. In: ASE 2009, 24th
IEEE/ACM International Conference on Automated Software Engineering, Auckland,
New Zealand, November 16-20, 2009. IEEE Computer Society, 2009, pp. 468–479.
isbn: 978-0-7695-3891-4. doi: 10.1109/ASE.2009.88. url: https://doi.org/10.
1109/ASE.2009.88.

[62] Adam Lella and Andrew Lipsman. “The U.S. Mobile App Report”. In: (2014).
Retrieved January 30, 2018. url: https : / / www . comscore . com / Insights /
Presentations-and-Whitepapers/2014/The-US-Mobile-App-Report.

[63] Lightbend Inc. Akka. Retrieved January 30, 2018. 2011. url: https://akka.io.
[64] Ryan Matzner. Why Web Apps Will Crush Native Apps. Retrieved January 30, 2018.

2012. url: http://mashable.com/2012/09/12/web-vs-native-apps/.

75

https://doi.org/10.1145/359576.359585
https://doi.org/10.1007/978-3-642-14107-2_16
https://doi.org/10.1007/978-3-642-14107-2_16
https://doi.org/10.1007/978-3-642-14107-2_16
https://doi.org/10.1145/1141277.1141704
http://doi.acm.org/10.1145/1141277
https://dojotoolkit.org
https://dojotoolkit.org
https://doi.org/10.1145/1596655.1596658
https://doi.org/10.1016/0020-0190(87)90125-6
https://doi.org/10.1016/0020-0190(87)90125-6
https://doi.org/10.1016/0020-0190(87)90125-6
https://doi.org/10.1109/ASE.2009.88
https://doi.org/10.1109/ASE.2009.88
https://doi.org/10.1109/ASE.2009.88
https://www.comscore.com/Insights/Presentations-and-Whitepapers/2014/The-US-Mobile-App-Report
https://www.comscore.com/Insights/Presentations-and-Whitepapers/2014/The-US-Mobile-App-Report
https://akka.io
http://mashable.com/2012/09/12/web-vs-native-apps/

Bibliography

[65] Bertrand Meyer. “On Formalism in Specifications”. In: IEEE Software 2.1 (1985),
pp. 6–26. doi: 10.1109/MS.1985.229776. url: https://doi.org/10.1109/MS.
1985.229776.

[66] Microsoft. TypeScript - JavaScript that scales. Retrieved January 30, 2018. 2012.
url: http://www.typescriptlang.org.

[67] Robin Milner. A Calculus of Communicating Systems. Vol. 92. Lecture Notes in
Computer Science. Springer, 1980. isbn: 3-540-10235-3. doi: 10.1007/3-540-10235-
3. url: https://doi.org/10.1007/3-540-10235-3.

[68] Robin Milner. Communicating and mobile systems - the Pi-calculus. Cambridge
University Press, 1999. isbn: 978-0-521-65869-0.

[69] Miguel Mota. JavaScript idiosyncrasies. Retrieved January 30, 2018. 2017. url:
https://github.com/miguelmota/javascript-idiosyncrasies.

[70] Brad A. Myers, Scott E. Hudson, and Randy F. Pausch. “Past, present, and future
of user interface software tools”. In: ACM Trans. Comput.-Hum. Interact. 7.1 (2000),
pp. 3–28. doi: 10.1145/344949.344959.

[71] Node.js Foundation. Node.js. Retrieved January 30, 2018. url: https://nodejs.
org/en/.

[72] Object Management Group R©, Inc. What is UML. Introduction to OMG’s Unified
Modeling LanguageTM(UML R©). Retrieved January 30, 2018. 2005. url: http:
//www.uml.org/what-is-uml.htm.

[73] Martin Odersky, Lex Spoon, and Bill Venners. Object equality. Retrieved January
30, 2018. Artima Inc., 2008. url: http://www.artima.com/pins1ed/object-
equality.html.

[74] Tim O’reilly. What is web 2.0. Retrieved January 30, 2018. 2005. url: http://www.
oreilly.com/pub/a/web2/archive/what-is-web-20.htm%20l.

[75] Addy Osmani, Sindre Sorhus, Pascal Hartig, Stephen Sawchuk, Colin Eberhardt,
Arthur Verschaeve, and Sam Saccone. TodoMVC. Retrieved January 30, 2018. 2011.
url: http://todomvc.com.

[76] Polymer Authors. Polymer Project. Retrieved January 30, 2018. 2016. url: https:
//www.polymer-project.org.

[77] Q-Success. Usage of JavaScript for websites. Retrieved January 30, 2018. 2018. url:
https://w3techs.com/technologies/details/cp-javascript/all/all.

[78] Dave Raggett, Arnaud Le Hors, Ian Jacobs, et al. HTML 4.01 Specification. Tech. rep.
World Wide Web Consortium, 1999.

[79] Raghu Rajkumar, Nate Foster, Sam Lindley, and James Cheney. “Dr. Formlens, Or:
How I Learned to Stop Worrying and Love Monoidal Functors”. In: (2012).

[80] Jeff Rothenberg. The nature of modeling. John Wiley Sons, Inc., 1989, pp. 75–92.
[81] Douglas C. Schmidt. “Guest Editor’s Introduction: Model-Driven Engineering”. In:

IEEE Computer 39.2 (2006), pp. 25–31. doi: 10.1109/MC.2006.58. url: https:
//doi.org/10.1109/MC.2006.58.

76

https://doi.org/10.1109/MS.1985.229776
https://doi.org/10.1109/MS.1985.229776
https://doi.org/10.1109/MS.1985.229776
http://www.typescriptlang.org
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-10235-3
https://github.com/miguelmota/javascript-idiosyncrasies
https://doi.org/10.1145/344949.344959
https://nodejs.org/en/
https://nodejs.org/en/
http://www.uml.org/what-is-uml.htm
http://www.uml.org/what-is-uml.htm
http://www.artima.com/pins1ed/object-equality.html
http://www.artima.com/pins1ed/object-equality.html
http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.htm%20l
http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.htm%20l
http://todomvc.com
https://www.polymer-project.org
https://www.polymer-project.org
https://w3techs.com/technologies/details/cp-javascript/all/all
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1109/MC.2006.58

Bibliography

[82] Bran Selic. “The Pragmatics of Model-Driven Development”. In: IEEE Software 20.5
(2003), pp. 19–25. doi: 10.1109/MS.2003.1231146. url: https://doi.org/10.
1109/MS.2003.1231146.

[83] Jonathan Strickland. How Web 2.0 Works. Retrieved January 30, 2018. 2007. url:
https://computer.howstuffworks.com/web-20.htm.

[84] Pedro A. Szekely. “Retrospective and Challenges for Model-Based Interface De-
velopment”. In: Design, Specification and Verification of Interactive Systems’96,
Proceedings of the Third International Eurographics Workshop, June 5-7, 1996, Na-
mur, Belgium. Ed. by François Bodart and Jean Vanderdonckt. Springer, 1996, pp. 1–
27. isbn: 3-211-82900-8.

[85] The jQuery Foundation. jQuery. Retrieved January 30, 2018. url: http://jquery.
com.

[86] Sebastián Uchitel, Jeff Kramer, and Jeff Magee. “Synthesis of Behavioral Models
from Scenarios”. In: IEEE Trans. Software Eng. 29.2 (2003), pp. 99–115. doi: 10.
1109/TSE.2003.1178048. url: https://doi.org/10.1109/TSE.2003.1178048.

[87] Jean Vanderdonckt. “Model-Driven Engineering of User Interfaces: Promises, Suc-
cesses, Failures, and Challenges”. In: Proceedings of 5th Annual Romanian Conference
on Human-Computer Interaction ROCHI’2008. Matrix ROM (Bucharest), 2008.

[88] Steve Vinoski. “Concurrency with Erlang”. In: IEEE Internet Computing 11.5 (2007),
pp. 90–93. doi: 10.1109/MIC.2007.104. url: https://doi.org/10.1109/MIC.
2007.104.

[89] WHATWG. Living Standard — Last Updated 29 January 2018. Tech. rep. WHATWG,
2018.

[90] Jon Whittle and Johann Schumann. “Generating statechart designs from scenarios”.
In: Proceedings of the 22nd International Conference on on Software Engineering,
ICSE 2000, Limerick Ireland, June 4-11, 2000. Ed. by Carlo Ghezzi, Mehdi Jazayeri,
and Alexander L. Wolf. ACM, 2000, pp. 314–323. isbn: 1-58113-206-9. doi: 10.1145/
337180.337217. url: http://dl.acm.org/citation.cfm?id=336512.

[91] Jim R Wilson and Jacquelyn Carter. Node. js the right way: Practical, server-side
javascript that scales. Pragmatic Bookshelf, 2013.

77

https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1109/MS.2003.1231146
https://computer.howstuffworks.com/web-20.htm
http://jquery.com
http://jquery.com
https://doi.org/10.1109/TSE.2003.1178048
https://doi.org/10.1109/TSE.2003.1178048
https://doi.org/10.1109/TSE.2003.1178048
https://doi.org/10.1109/MIC.2007.104
https://doi.org/10.1109/MIC.2007.104
https://doi.org/10.1109/MIC.2007.104
https://doi.org/10.1145/337180.337217
https://doi.org/10.1145/337180.337217
http://dl.acm.org/citation.cfm?id=336512

	Introduction
	Background Information
	Web-Development
	A Brief History
	Main Challenges
	Main Advantages

	Concurrency and Actors
	The Actor Model

	Links
	Core Syntax
	Type System
	Formlets
	Concurrency
	Client-Server-Interaction

	Uselets Example
	Uselets Concepts
	Abstractions
	Usage Methodology
	Key Benefits
	Visual Notation

	Uselets Implementation
	Uselets in Links
	Uselets in JavaScript
	Implementation Differences and Challenges
	Testing
	Debugging

	Case Studies
	Kanban Board
	TodoMVC

	Evaluation
	Related Work
	Conclusion and Future Work
	Future Work
	Conclusion

