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Abstract

This project aims to develop an animation framework for Links to help programmers

model animation on the World Wide Web. We incorporate the idea of Functional Reac-

tive Animation into the design of our framework. Our work strengthens the simplicity

and expressiveness of Links by separating the model and the presentation. It enables

programmers to be able to rapidly prototype animations.
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Chapter 1

Introduction

1.1 Motivation

Animation enriches the user experience on the Web by providing visually appealing

and interactive contents. It is widely believed that animations often catch eyeballs bet-

ter than static images. As the internet plays an ever more important role to convey

ideas between business entities and individuals, there is a need of using more pro-

ductive tools to create animating contents effectively. From a programmer’s point of

view, a Domain Specific Language(DSL) or a framework in the programming language

would suffice. Links is a young functional programming language that has many fea-

tures dedicated to Web applications. Having said that, it does not have a specific design

to produce animations on the internet. It gives us an incentive to build a framework for

Links to serve this purpose.

1.2 Introduction

An animation on the Web involves its static and dynamic presentations as well as

the corresponding behaviors when the interaction between it and users is taken into

account. The simplest form of it is a series of frames. A common example is GIF

images. On the other hand, some animation formats like Flash do not only present the

content but also engage user interaction. Scalable Vector Graphics(SVG)[7] is a XML

based language used to describe images and animations. It has elements and attributes

supporting both static and dynamic content and user interaction. SVG files are valid

XML documents. When it comes to manipulate images in Links, programmers can do

so easier to SVG files than other formats by using Links’ XML DOM APIs.

1



Chapter 1. Introduction 2

Our work does not only beautify Links’ syntax to control SVG. It aims at linking

SVG and Links under the concept of Functional Reactive Animation. One can reckon

an animation simply as a continuous, time-varying image. On computers, the presen-

tation of animation is done by continuously drawing on the screen frame by frame.

Therefore, a basic way to create animation is on per frame basis. With this insight,

as to programming animations, programmers’ job typically is to use low level graphic

APIs to push the computer correctly displaying each frame step by step. However, this

activity often entails too much detail irrelevant to the content of the animation. The

problem of this approach is that, without a clear abstraction, developers often need to

mix the complexity of the underlying computer system and the logic of animation in

the code.

An abstraction that separates the model and presentation of the content thus is

needed. Functional Reactive Animation(FRA)[1] allows programmers to simply de-

clare what the content of the animation is and then let the computer worries about how

to present it. The concept is different from developing an ordinary graphic library.

Generally speaking, a library does not alter the programming paradigm and mostly

emphasises only the encapsulation of the details of the underlying system. Neverthe-

less, FRA highlights the relation between values and time besides encapsulation. As a

result, it constructs a programming paradigm dedicated to animation.

The value of FRA lies in the notations of of behaviours and event streams that make

the presentation of an animation easy to reason about. Behaviors are the values that

will be evaluated over continuous time. Changes of time will automatically propagate

updates to dependent behaviours to maintain the consistency of the presentation. Event

streams represent values that exhibit only in particular times. They are discrete over

time regarding to their occurrences. An event in the stream may carry relevant data. For

instance, a mouse moving event typically comes with the current position of the mouse.

Depending on what kind of event it is and what information it carries, behaviours

will be changed by it accordingly. By incorporating FRA into Links, developers can

program the logic of animations in a declarative and compositional style and avoid

being fuddled by too much detail.

1.3 Aims and Objectives

We set up the following objectives to evaluate the maturity of our project.
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• A framework dedicated to creating animation will be implemented. Its APIs

should conform to the semantics of Functional Reactive Animation.

• A set of SVG primitives can be created and composed in Links using our frame-

work.

• A few animations will be demonstrated to show the ability to manipulate SVG

primitives dynamically.

• We shall be able to show the ability of reacting to input from the user by a few

examples.

1.4 Contribution

FRA is being actively researched and many significant works have been published.

This project stands on the shoulders of existing works to make contributions:

• We explore the semantics of FRA and make sense of it in the context of Web

applications.

• A functional reactive animation framework for Links is created. Four working

applications are developed to evaluate our work.

• Given that Links is a strict language, a lazy list library is developed. Issues of

inefficiency are tackled by imposing lazy evaluation on the essential data struc-

tures.

In the body of this thesis, we will introduce the underlying technologies essential to

our framework, namely, FRA, Links and SVG. Then design of the data types, APIs and

the internal of the framework will be examined under scrutiny. Next, a few examples

using our framework will be demonstrated and explained. Before the conclusion, we

will look at the completeness of our work and discuss about the future improvement

and related works.



Chapter 2

Background

We will review the basic idea of FRA. An implementation in Haskell called Fran will

be analysed to explain the notions of behaviours and event streams. Following up, we

will discuss the purpose of Links and put an emphasis on the features that are rele-

vant to our project. Finally, we will look at SVG and examine its strength in creating

animation.

2.1 Review of Functional Reactive Animation

Functional Reactive Animation is best known from the paper by Conal Elliott and Paul

Hudak[1]. An animation library for Haskell called Fran was implemented in the paper

to demonstrate the idea. In Conal and Paul’s paper, they use “Fran” referring to both

Functional Reactive Animation and the library. In this paper, we will use “FRA” as the

abbreviation for Functional Reactive Animation and use “Fran” exclusively for Conal

and Paul’s library.

FRA heats up following researches about Functional Reactive Programming(FRP).

FRP refers a programming paradigm that view programming as building a continu-

ous system that will react stimuli from both inside and outside. In the case of Func-

tional Reactive Animation, the system being developed is an animation. FRA exploits

the high level declarative programming paradigm of FRP in the domain of anima-

tion. The formal semantics of it is described in [1] and further explored in [11]. In

some literature, it is referred as Classic FRP[15][21] to differentiate from many later

works altering some of the semantics or using different representations to optimise the

performance[4; 16].

To thoroughly embed the functional reactive programming paradigm into a pro-

4
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gramming language, FRA is often implemented as a Domain Specific Language(DSL)[11]

that behaves as built-in constructs of the “host” language. In Conal and Paul’s paper,

the “host” language for Fran is Haskell. Fran is then refined by Paul Hudak to imple-

ment a DSL called FAL[13], which is short for Functional Animation Language.

From a programmer’s of view, a behaviour is an always updated value, an event

stream is a source of events and an FRA program is just a set of mutually-recursive

behaviours and events[11]. We will introduce the core concepts of FRA. Some code

to assist explanation will be presented in Haskell owing to its concise and powerful

syntax.

2.1.1 Behaviours

One of the most important concepts in FRA is behaviours, which are values evaluated

over time. It is a polymorphic data type in Haskell. One can think it as the following

definition:

type Behaviour a = Time -> a

The type signature reveals that given a polymorphic type variable a, Behaviour a

can be viewed as a function accepts Time and then returns value of type a. One critical

point which can be observed just from the type is that a behaviour is evaluated over

time. In other words, Time is fed to the function at all times. Here is an example:

time :: Behaviour Real

time = id

time is of the type Behaviour Real and is defined as a identity function that returns

whatever it receives. Because behaviours are fed with time continuously, so time sim-

ply means the time.

A slightly more complicated behaviour borrowed from [1]. Given a behaviour pi

of the type Behaviour Real as well as the time behaviour we had in previous example,

a higher level ”wiggle” behaviour is defined:

pi :: Behaviour Real

wiggle :: Behaviour Real

wiggle = sin(pi * time)
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pi is a so called constant behaviour, since it is always evaluated to the constant

value π in the course of animation. (*) operator and sin are overloaded to functions

that accept Behaviour Real and return Behaviour Real. wiggle is of the type Behaviour

Real and defined based on the overloaded trigonometric function sin and only produces

values ranging from -1 to 1 as time passes. This example shows FRA’s ability of

composing which allows programmers to write high-level behaviours by composing

other ones. It also illustrates the power of overloading. Overloading in Haskell is

done by the type class mechanism. In Fran, many built-in types have already been

overloaded. It makes programs more readable[12].

2.1.2 Events

.

Besides Behaviour, another key concept in FRA is event streams(or just ”events”

in some literature). The notation of event streams stems from the need to response

internal conditions and external events[12]. An event stream is a time-stamped and

sorted sequence of values. It is convenient to express its type in Haskell as:

type Event a = [(Time , a)]

Like Behaviour, Event is a polymorphic data type that has a type variable a. An

event may carry some information with respect to the event itself. For instance, an

event of moving is expected to carry the mouse position where a user moves the mouse

to. Its type signature is:

mMove :: Event(Int, Int)

For events do not have additional information, they would be of the type Event ().

(), read “unit”, means that there is no information.

We have seen that behaviours can be composed to create a higher level behaviour.

Similarly, there is a set of useful combinators that produces semantically richer event

streams. Two common ones are choice operators and predicates[1; 13].

A choice operator is an operator that assembles multiple event streams in different

ways such as performing logical “or” or “and” over them. For “or”, the first occurrence

in either streams would be taken, whereas for “and”, the occurrence would count only

if it appears in two streams at the same time.

Predicates, or boolean events[13], test a behaviour of boolean with a given time

and give an event stream of occurrences that the behaviour evaluates to true.
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2.1.3 Reactivity

Reactivity is how a behaviour changes in response to a Event. It is done by switch

combinators and event handlers. A switch combinator would be in the form:

b ‘switch ‘ es

Given that b is a behaviour and es is an event stream yields behaviours as its val-

ues(information), then its semantics can be described as initially behaving as b, then

switches to the behaviour carried by the first event of interested in the event stream es,

then to the next one, and so on[13].

es should contains events with a behaviour as information. If it does not, event han-

dlers can be used to convert information of other kinds to a behaviour. Event handlers

are higher order functions that accepts an event stream and an user supplied function.

An event in the stream may have information, a handler would deal with the it for every

event and return a new stream which can be the right operand of switch.

Event Mapping (==>) is an important handler that has this type:

(==>) :: Event a -> (a -> b) -> Event b

Given that a constant behaviour always being evaluated to the color of red:

red :: Behaviour Color

the expression:

mClick ==> (\_ -> red)

changes the type of an stream mClick from Event () to Event (Behaviour Color).

Which means that it replaces the empty information () carried with an event with a

color behaviour. In fact, another handler is arguably more suitable in this situation:

(-=>) :: Event a -> b -> Event b

It is a syntactic sugar of (==>) by which we can get rid of the lambda function.

Henceforth we can simply write:

mClick -=> red
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In fact, either (==>) or (-=>) can be seen as more specific versions of the generic

(+=>) handler:

(+=>) :: Event a -> (Time -> a -> b) -> Event b

This generic handler passes the time stamp and information of an event to the user

supplied function that will return a value of interest, with which the original informa-

tion is replaced.

A event handler returns a transformed event stream. The switch combinator then

use it to alter the behaviour. It has the type:

switcher :: Behaviour a -> Event (Behaviour b) -> Behavior b

The following expression defines newcolor as a Behaviour Color which exhibits red

color until a mouse click, then turns into blue. It forms reactivity by simply composing

behaviours and event streams.

newcolor = red ‘switcher ‘ (mClick -=> blue)

Composing Behaviours or Events to build higher level behaviours forms the spine

of a FRA program. In th end, there will be one top-level behaviour which embeds all

dependencies of behaviours and events stream. As it is evaluated with the current time,

the effect is similar to unfold and examine every behaviour and event stream which

depends on one another.

2.2 Links

Links is a strict, typed functional programming language for the web[3]. The typical

structure of a Web application often involves three tiers, which are:

• Scripts and web pages run on the client side in the browser.

In order to provide consistent user experience, web pages had better follow a

set of standards published and maintained by W3C. Nevertheless, there is no

hard-and-fast rule about which programming languages should be used to write

scripts. Nowadays, a large proportion of developers choose JavaScript.

• Programs run on the server side to serve requests from clients.

A wide range of choices of programming languages are here. Some popular ones

are Perl, Ruby, Python, PHP, just to name a few.
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• A database accessible by Structured Query Language(SQL).

Programs in the second tier issue commands in SQL to the database. SQL is a

standardised language and is supported by most of the database.

Traditionally, programs in different tiers are written or controlled in different lan-

guages. Links aims to change the situation by allowing developers to write Web appli-

cations in one language.

In practice, most server-side web programming languages has syntax that allows

programmers to directly embed JavaScript for browser, which will then run on the

client side. The compiler/interpreter will bypass the embedded JavaScript whenever

seeing it. Links takes a different view on JavaScript. JavaScript is considered as the

low-level “machine code” that a part of a Links program will be compiled to. Program-

mers can not and does not need to code JavaScript along with Links. As to the part of

code runs on the server side, it will be compiled and executed by the Links compiler

on the server.

On top of that, Links supports Language-integrated database queries. In most main-

stream languages, SQL commands are represented as plain strings. The hosting lan-

guage’s major work is to concatenate those strings and send them to the database. The

hosting language does not know about the semantics of the commands. From its view-

point, commands are just strings. While in Links, commands are written in its built-in

notation and translated into SQL[5]. The immediate advantage is that the queries can

be syntax checked, type checked and even optimised by the compiler.

The features most relevant to our project will be briefly introduced below. More

advanced features and examples can be found in [6] and [5].

2.2.1 Basic Syntax

As far as this project is concerned, we will introduce some of Links’ basic syntax and

some features essential to our framework.

2.2.1.1 Types

The most basic types in Links are Int, Float , String and XML. Links honours strong

typing that does not allow implicit type coercion. Different sets of arithmetic operators

are provided for Int and Float. Consequently, the following code is not legal:

var n = 1.0 + 2;
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One have to choose operands to be either both Int:

var n = floatToInt (1.0) + 2;

or both Float

var n = 1.0 +. intToFloat(2);

In addition to primitive types, Links supports several forms of composite types.

Lists and tuples and their operations are frequently used in programs. They both can

be polymorphic, only that tuples can have elements of different types, whereas lists

can not.

Moreover, two advanced composite types, records and variants are tremendously

useful in our framework. Records are named tuples. Each field consists of a pair of

label and value such as:

var attr = (positionX = 50.0, positionY = 100.0,

text = "hello");

It can be updated by adding a different field:

var moreAttr = (stroke = "blue" | attr);

The value of an existing field can be overwritten:

var changedAttr = (attr with text = "goodbye");

Note that variables in Links are immutable and single-assigned. Hence updating

attr in the example does not alter attr but create a copy with the updated value.

While records must have a determined kinds of fields, variants can uses explicit

labels to distinguish different sets of possible value[6]:

typename RotateParam =

[|Angle:Float

|All:(angle:Float , about:(Float , Float))|];

In Links, typename is used for defining a type synonym. As such a value of RotateParam

type in the example can be either just an angle or an angle and a center coordinate.

Suppose we have a function that rotates an image according to RotateParam, which type

signature is:



Chapter 2. Background 11

sig rotateImage : (Image , RotateParam)  Image

, then passing either the angle and the center, or just the angle to the function are

legal:

var newImage1 = rotateImage(oldImage , Angle(45.0));

var newImage2 = rotateImage(oldImage , All(angle = 30.0, about =

(50.0, i50.0)));

Like many functional programming languages, Links supports pattern matching.

One can pattern match a value in a switch expression, variable definition, function

application, etc. One advantage of using pattern matching is to de-construct a value

of the composite type and bind its components to variables at the same time, as the

implementation of rotateImage shows:

sig rotateImage : (Image , RotateParam)  Image

fun rotateImage(img, para:RotateParam) {

switch (para) {

case Angle(a) -> doRotate(img, a, 0, 0)

case All(a, (x, y)) -> doRotate(img, a, x, y)

}

}

Though it is not necessary to fully understand some of the most state-of-the-art

designs in Links’ type system, being able to read type signatures would facilitate users

to better comprehend and make use our of framework. For instance,

sig filterE : ((Float , a) {} Bool , Event(a)) -> Event(a)

The first pair of parentheses of this function contains parameters needed. The return

type follows the ordinary arrow. The first parameter is a predicate that has parameters

of a Float and a polymorphic type a and then returns a value of boolean type. The

pair of braces and the tilde arrow in the predicate are part of Links’ type system that

support effect typing[6]. A function hints that it makes recursive calls by replacing the

ordinary arrow with the tilde arrow. Additionally, it annotates effects inside braces of

a signature. In this case, {} stands for no effects at all.
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2.2.1.2 Concurrency

Links implements Actor Model on top of JavaScript to achieve client-side concurrency[3].

Actor model is the concurrency model for some languages such as Erlang and Scala.

In this model, each process is equipped with a “mailbox”, the way to share data is

by sending message to each other’s mailbox. In Links, three primitives – spawn, !,

receive – are implemented to handle concurrency.

1. var pid = spawn{ expressions };

A process is created to evaluate expressions. A process id is returned and can be

used to send message to the newly created process.

2. pid ! msg;

(!) operator is the message sending primitive. Its left operand is the process id

of the receiving process. (!) is asynchronous so that the sender does not wait for

the receiver actually getting the message.

3. receive { ... }

The receiving process can wait and listen to incoming messages by using receive.

It often has the following syntax:

receive {

case pattern1 -> expression1

case pattern2 -> expression2

...

}

An incoming messages is pattern matched against different clauses, the matched

one will be executed. If a process just wants to take whatever the next message

in its mailbox, then it can simply do:

var newMsg = recv();

4. var pid = spawnWait{ expressions };

spawn does not guarantee any order of execution between the calling and the new

processes. However, spawnWait allows programmer to force the calling process

to wait until the newly created process terminates. Synchronous messaging can

be implemented indirectly by spawnWait a temporary process sending a message

asynchronously and waiting until it terminates.
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As we will see in section 3.4.2, concurrency plays an crucial role in our internal

event handling structure.

2.2.1.3 Xml Manipulation

Links’ ability of XML Manipulation is the fundamental technique used in our project to

manipulate SVG. It provides built in XML and DOM APIs. Programmers can use them

to change the XML document structure, style and content. Event handlers installed to a

node in DOM by Links’ l-event attributes can capture events associated with the node.

Links has convenient syntax for constructing XML data. Programmers can easily

embed XML values within the program by XML Quasi-quotes[6]. A section of XML

code enclosed by XML tags is a quasi. A section of Links code enclosed by a pair of

braces insides a quasi can escape from the quasi to be evaluated as Links code rather

than XML values. Then the result of evaluation will be embedded back to the quasi to

construct a XML value.

2.3 SVG

Scalable Vector Graphics is a XML based language standardized by W3C and is al-

ready supported in most of the mainstream browsers. Unlike pixel-based image for-

mats that define every pixel in a picture, it is vector-based. SVG images only consist

of geometrical primitives like lines, curves, points and polygons which are defined by

mathematical equations rather than pixels. Therefore, a SVG image can be scaled to

fit all sizes of web pages neatly.

Besides, SVG is a markup language which allows users to describe an image in a

declarative way. Instead of giving a series of drawing instructions for the primitives

in an image, one specifies the attributes and the relationship between them and then

leaves the browsers to handle the presentation of the whole image. For instance, to

draw a circle filled in red, we can just specify the coordinates of the center, the radius

and the style of the circle:

<svg xmlns="http://www.w3.org/2000/svg" version="1.1">

<circle cx="60px" cy="100px" r="50px"

style="fill:white; stroke:red; stroke -width:4"/>

</svg>
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SVG inherits advantages from XML. Firstly, it is searchable. The data is stored

in plain text. Therefore, the information inside is transparent to search engines and is

comprehensible for human beings. Secondly, SVG is programmable. It is in essence

a legal XML document and thus can be controlled by programming with DOM APIs

supported by browsers. It allows us to create animations by programming the DOM

structure of SVG in Links.

2.3.1 SVG Builtin Animation Elements

The declarative model of SVG does not only reside in static graphics but also extend

to animation. SVG 1.1 supports the ability to change vector graphics over time[8].

This ability incorporates SMIL Animation specification[9], with some constraints and

extensions. SMIL, short for Synchronized Multimedia Integration Language(SMIL),

is an animation framework that defines a set of XML animation elements which can be

integrated to a XML document. In a broad sense, SVG is a host language in terms of

SMIL Animation. To animate in SVG, one first chooses either target element/elements

or attribute/attributes, and then applies the animation elements and their correspond-

ing attributes to them. There are five animation elements for different functionalities,

namely animate, set, animateMotion, animateColor and animateTransform.

Listing 2.1 demonstrates the usage of animate and animateMotion to move a rect-

angle and change its color at the same time.

Listing 2.1:

1 <rect x="0" y="0" width="50" height="30" fill="green">

2 <animate attributeName="fill"

3 from="red" to="yellow"

4 begin="1s" dur="8s" repeatCount="5"/>

5 <animateTransform attributeName="transform"

6 attributeType="XML"

7 type="translate" from="0, 0" to="100, 0" dur="5s"

8 additive="sum" fill="freeze"/>

9 <animateTransform attributeName="transform"

10 attributeType="XML"

11 type="scale" from="1" to="3" dur="10s"

12 additive="sum" fill="freeze"/>

13 </rect>
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animate is a commonly used animation element. It specifies gradual transitions of

certain types of attributes in the target element. For instance, Listing 2.1 demonstrates

applying animate to the fill attribute of a green rectangle, in an attempt to change

the color from red to yellow in seven seconds starting from the first second after the

document is loaded. After that, the color changing effect will repeat for five times as

specified by repeatCount, each time takes seven seconds as well.

Two animateTransform elements are apply to the same rectangle. One is for translate

and the other is for scale. For the first five seconds of this animation, the coordinate

system is being translated over time, which causes the rectangle position gradually

moving rightwards. Moreover, the coordinate system is being scaled over the first ten

seconds, which has the effect that the size of the rectangle grows. It is worth noting that

the two transformations during the first five seconds are overlapped, hence the effects

are “multiplied” in the sense that a series of transformations is in fact matrix multi-

plication to form one transformation matrix producing the overall effect. Because of

the relationship between transformations and matrices, a different order of a series of

transformations will result in a different multiplied matrix which produces a different

transformation.

SVG animation has many outstanding features. First, like static SVG, the syntax

is declarative. Secondly, its declarative syntax does not only offer a means to model

animation over time, but also over events. All of the animation elements above can

be triggered by internal events(such as the end of a revolving circle animation), and

external events(such as a mouse click). With a language such as JavaScript that im-

plements SVG standard DOM event API, events sent to SVG can be programmed to

support user interaction.

2.4 Comparison Between SVG and FRA in Links

SVG is very powerful. With the ability to incorporate another programming language

like JavaScript to handle user input events, It can create several kinds of animation with

user interaction. In this way, however, we mix two languages but do not get doubled

benefit. We take the advantage of SVG’s declarative syntax to model animation, but

only partly. We need also rely on JavaScript to process the logic of responding to exter-

nal or internal events and organising SVG primitives. JavaScript is a more imperative

programming language thus the entire program becomes less declarative: what to be

shown and how to show are blended together.
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The situation becomes even worse if one wants to control SVG in Links by Links’

built-in XML DOM APIs. In Links, a piece of SVG code is of string type or XML

type which can be directly embedded in the Links code(section 2.2.1.3). Nevertheless,

Links has no way to know the semantics of the embedded XML it carries. For instance,

if the “cx” attribute of a “circle” element is miswritten as a “x”, the code will still be

happily compiled, just the browser will not display it. Anything wrong happening in

one language is not detected by another.

The problem here is similar to database programming in most mainstream lan-

guages where Links has its way to address the hazard of it(section 2.2). In the case

of marrying SVG and Links, we are looking for a way without implementing a new

language feature in Links.

As a typical solution in Computer Science, adding a layer of abstraction like a

library to hide the details can help get rid of the hassles of SVG syntax. Even so, to

alleviate other problems, we need to go further. Our framework for Functional Reactive

Animation in Links would fit in this context better in that programs can be written in

declarative style in one language.



Chapter 3

Design and Implementation

The key designs of our framework will be revealed in the section. We will first look

at behaviours. Next, SVG primitives as behaviours will be discussed. Followed by

the skeleton of framework and internal event structure, the implementation of Event

streams and reactivity will be explained in detail.

3.1 Design of Behaviours

We start by looking at the type of behaviours.

typename Time = Float;

typename Beh(a) = (Time) {} a;

The first line suggests that Time is the synonym of Float. Like Classic FRP(section

2.1.1), our behaviour type Beh(a) is the synonym of a function type that takes Time and

returns the value of a polymorphic type a.

Some of Links’ built-in functions can be treated as behaviours naturally as they

have compatible representation. For instance,

sig sin : (Float) -> Float

sig cos : (Float) -> Float

can be seen as:

sig sin : Beh(Float)

sig cos : Beh(Float)

17
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In the jargon of FRP, the operation that converts a function over values to an anal-

ogous function over behaviours is called lifting[1]. Haskell saves programmers from

using lifting operators ubiquitously in the program by type class mechanism, which is

Haskell’s way to achieve ad-hoc polymorphism[17]. For instance, the type Behaviour

Int is declared to be an instance of type class Num. The programmers can use Behaviour

Int in wherever the Num type fits in, such as (+) and (*) operators. This ability offers

powerful expressive syntax to programmers. On the other hand, currently neither type

class nor any ad-hoc polymorphism has been supported in Links, thus we have no way

to declare Beh(Int) as an instance of type class Num. Thus as to lifting a value of any

type to a behaviour, an unary lifting operator const is defined:

sig const : (a) -> Beh(a)}

fun const(v) {

fun (t:Float) { v }

}

such that

var one = const(1.0);

var path = const("/image/button.jpg");

would just give us a behaviour of the type Beh(Float) and Beh(String).

For functions with the higher arity, our approach to lift is to define different versions

of function that can be applied to arguments of different types such as:

sig iAddB : (Beh(Int), Beh(Int)) -> Beh(Int)

sig fAddB : (Beh(Float), Beh(Float)) -> Beh(Float)

The two functions above are lifted versions of the (+) operator. They add up two

Beh(Int) and two Beh(Float) respectively.

Inevitably, this approach slightly hinders the readability of a program, but we try

to reduce the unease to the minimum by choosing meaningful names for them. Also it

is encouraged to use of the infix form of binary functions to make an expression more

straightforward:

var pos = sin ‘iAddB ‘ const(1.0);

There is a set of functions assisting manipulation of behaviours. For the behaviour

of a binary tuple, taking the behaviour of its first or second component can be done by:
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sig fstB : (Beh((a, b))) -> Beh(a)

sig sndB : (Beh((a, b))) -> Beh(b)

fstB takes a behaviour of a pair, then only returns the behaviour of the first compo-

nent. sndB is similar but interested the second component.

Programmers often need to deal with conversions from composite types to be-

haviours and vice versa. Following functions convert a pair of behaviours to and fro a

behaviour of a pair:

sig toPairB : (Beh(a), Beh(b)) -> Beh((a, b))

sig toBPair : (Beh((a, b))) -> (Beh(a), Beh(b))

toPairB binds two behaviours, so that they will be evaluated based on the same time.

To the contrary, toBPair splits a behaviour of a pair to two behaviours. A complete list

of arithmetic and other APIs can be found in Appendix A.

3.1.1 Time Transformation

By default, a behaviour is evaluated regarding to the current time. Suppose we want

to make a behaviour be evaluated to the value as at the half time the behaviour would

originally being evaluated to, we can achieve it by transforming the time frame to two

times longer. It is called Time Transformation. The transformed time frame therefore

is called local time frame. We have transformation utilities:

sig slowerB : (Beh(a), Beh(Float)) -> Beh(a)

sig fasterB : (Beh(a), Beh(Float)) -> Beh(a)

slowerB accepts the two behaviours. The first one is a behaviour which value varies

over time, another is a Beh(Float) indicating how many times slower the variation will

become, i.e. how many times larger one would like the local time frame to be. In a

similar sense, fasterB is the dual of slowerB.

Another transformation does not alter the size of each time frame, but shift it. It

makes a behaviour be evaluated with some time earlier.

sig delayB : (Beh(a), Beh(Float)) -> Beh(a)
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3.2 SVG Shapes

Our framework supports most of SVG basic shapes. For each kind of shape, we can

apply common attributes to produce animation. For example, rectangle has this type:

sig rect : () -> (Attrs) -> (Time) {} Xml

Observing that what is after the last straight arrow is the type synonym of Beh(Xml),

we can conclude that a shape function would return a value varying over attributes(

Attrs) and time. We will call it a shape behaviour to distinguish from ordinary be-

haviours.

To make the type signature more concise, we define a synonym for shape be-

haviours as:

typename SBeh = (Attrs) {} Beh(Xml);

The signature of shape function rect becomes to:

sig rect : () -> SBeh

Attrs is a record type include the common attributes over shapes:

Listing 3.1: Attrs

1 typename Attrs = (posX:Beh(Float), posY:Beh(Float),

2 height:Beh(Float), width:Beh(Float),

3 fill:Beh(String), hrefImg:Beh (String),

4 stroke:Beh(String), strokeWidth:Beh(Float),

5 transform:[TForm],

6 points:Beh(Points),

7 text:Beh(String),

8 ffamily:Beh(String),

9 fsize:Beh(Float),

10 fweight:Beh(FontWeight),

11 fstyle:Beh(FontStyle));

Notice that each field is of a behaviour type, so that the change of time causes the

change of attributes and finally propagates to the shape behaviour.

As shown in the implementation of rect in Listing 3.2, a shape function typically

takes some attributes of its interest from Attrs, then synthesises a XML node.
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Listing 3.2: rect

1 sig rect : () -> SBeh

2 fun rect() {

3 fun (attr:Attrs) {

4 fun (t:Float) {

5 var x = intToString(floatToInt(attr.posX(t)));

6 var y = intToString(floatToInt(attr.posY(t)));

7 var w = floatToInt(attr.width(t));

8 var h = floatToInt(attr.height(t));

9 var s = floatToInt(attr.strokeWidth(t));

10

11 var trans = multiTFormString(attr.transform)(t);

12

13 <rect

14 transform="{trans}"

15 x="{x}"

16 y="{y}"

17 width="{intToString(w)}"

18 height="{intToString(h)}"

19 style="fill:{attr.fill(t)};stroke:{attr.stroke(t)};

20 stroke -width:{intToString(s)}" />

21 }

22 }

23 }

We may use over to express the order such that one shape is on top of another if

they come across each other:

var c = rect() ‘over ‘ ellipse();

over puts one XML node before another to produce a XML forest during the eval-

uation.

Listing 3.3: over

1 sig over : (SBeh , SBeh) -> SBeh

2 fun over(elm1B , elm2B) {

3 fun (attr:Attrs) {

4 fun (t:Float) {

5 <#>

6 {elm2B(attr)(t)}
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7 {elm1B(attr)(t)}

8 </#>

9 }

10 }

11 }

3.2.1 Manipulating SVG Shapes

For animation, the most used pair type is a pair of Float’s, where they can represent

coordinates or pairs of width and height:

typename FPair = (Float , Float);

typename Points = [FPair];

Having SVG shapes at hand, we offer utilities to manipulate them. All of the

functions for SVG shapes manipulation accept a shape behaviour as the first argument.

As it is suggested before, adequately using infix form of functions with binary arity

can significantly help readability.

One basic function is at, which declares the position of a given shape:

sig at : (SBeh , Beh(FPair)) -> SBeh

The expression:

var staticRect = rect() ‘at‘ const((100.0, 50.0));

evaluated to a rectangle that is always positioned at (100.0, 50.0). The result is a

statically positioned shape behaviour.

There are times, the coordinate we have is not one behaviour of a pair value but two

behaviours. Then toPairB(section 3.1) is needed to convert them to a single behaviour

based on the same time. As the following code which creates a rectangle moving to

and fro horizontally shows:

fun toAndFroRect(x:Float , y:Float) {

var behX = sin ‘fMulB ‘ const(x) ‘fAddB ‘ const(x);

rect() ‘at‘ toPairB(behX , const(y))

}
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Likewise, we have sizeof, which accept the same pattern of arguments only that its

second argument means the width and height behaviour.

A set of functions named with the prefix of “with” are defined for modifying some

common attributes, to name a few:

sig withText : (SBeh , Beh(String)) -> SBeh

sig withPoints : (SBeh , Beh(Points)) -> SBeh

sig withColor : (SBeh , Beh(String)) -> SBeh

withText sets the text of a text shape, withPoints sets the path for a polyline shape,

and withColor sets the filling color of shapes of many kinds.

3.2.2 Consecutive Transformations

Those shape manipulation functions mostly do not accumulate. If they are called upon

the same shape multiple times, the effect would not be carried out one after another.

In contrast, only the first issued call would take effect. That is, if sizeof is called upon

the same shape twice, only the first call holds.

Our framework offers programmers expressive syntax to organise the dependencies

between behaviours. It is the norm to combine behaviours into an expression as a

higher level behaviour by combinators. Then the expression is bound to a named

variable to which can be referred in following expressions. The last expression is

produced finally as the top-level behaviour. For example, given the code:

var position = const((200.0, 200.0));

var radius = const(50.0);

var sideLen = radius ‘fMulB ‘ const(2.0);

var square = rect() ‘at‘ position

‘sizeof ‘ toPairB(sideLen , sideLen)

‘withColor ‘ const("gray");

var circle = ellipse() ‘at‘ position

‘sizeof ‘ toPairB(sideLen , sideLen)

‘withColor ‘ const("white")

‘withStrokeWidth ‘ const(5.0);

var circle_on_square = circle ‘over ‘ square;
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Figure 3.1: Dependencies of expressions

The dependency of expressions forms a directed acyclic graph as show in Figure

3.1. The direction of arrows means not only the dependency, but also the order of

evaluation. As the result, if an attribute is set up, then any latter write of the same

attribute can not overwrite its value.

This does not bring much trouble in practice. Most of time, programmers only

want to express what value a behaviour has, rather than how to obtain its value. This

conforms to the declarative nature of SVG and captures the idea of FRP.

However, in the case of geometrical transformation, accumulation of effect is needed

as they have to be able to be chained. In SVG, the transform serves the purpose of the

transformation of coordinate system. It supports translate, scale, rotate, skewX and

skewY. They can be chained one after another to produce a series of transformation at

once.

In our framework, a set of corresponding functions are provided:

sig translate : (SBeh , Beh(FPair)) -> SBeh

sig scale: (SBeh , Beh(FPair)) -> SBeh

sig rotateAbout : (SBeh , Beh(Float), Beh(FPair)) -> SBeh

sig rotate : (SBeh , Beh(Float)) -> SBeh

sig skewX : (SBeh , Beh(Float)) -> SBeh

sig skewY : (SBeh , Beh(Float)) -> SBeh

To chain multiple transformations, a list transform:[TForm] is kept in Attrs(section

3.2) so that whenever a transformation is issued, the related arguments are attached to

the list. During the evaluation, the whole list is converted a string in SVG syntax.

3.3 Design of Events and Reactivity

Reactivity plays an important role in an user interface based on animation. Having

said that, our preliminary design suffered from the serious problem of time leaks. Re-
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sponses to user inputs become much slower as the time goes. It makes the idea of FRA

in Web applications unfeasible. We have put an effort to solve issues of this kind in

the course of development. In this section, our implementation of the lazy list as the

major data structure will be introduced. Then event streams based on the lazy list will

be explained. Finally, we will look at the intrinsic design of reactivity.

3.3.1 Lazy List

Unlike Haskell, which adopts ”lazy evaluation” by default, Links is a language that

would evaluate values strictly. The disadvantage can be seen from the following sce-

nario: if we want to map all integers in a list to characters and then take only the first

character of the list, the map operation will be carried out over the whole list regard-

less the fact that we only care about the first element. To avoid such inefficiency when

processing a potentially very large list, a generic lazy list library is developed in the

framework. A lazy list is a list that only presents the values of those elements being

accessed. A polymorphic lazy list is defined as:

typename LLst(a) = mu x . (() {} [|Nil|Cons:(a,x)|]);

mu x . (...) is the Links’ syntax for recursive type definition. It means that x

represents (...) and it can be used inside (...) to refer to (...) itself recursively.

Most common lazy list operations are supported with almost the same meaning as

their strict, built-in list counterpart, just to name a few:

sig lmap: ((a) {} b, LLst(a)) {} LLst(b)

sig lfilter: ((a) {} Bool , LLst(a)) {} LLst(a)

sig llen: (LLst(a)) {} Int

sig lfoldl: ((b, a) {} b, b, LLst(a)) {} b

It is worth noticing that some of the operations are not lazy at all such as llen and

lfoldl. They are not lazy because they can not process without traversing the whole

list.

3.3.2 Events

Events, or event streams are the sources of of events. They are discrete steams of

values. In Classic FRP(section 2.1), they are conceptually presented as an infinite
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list of pairs of time stamp and value. Although infinite lists essentially rely on the

language’s support for lazy evaluation, we can simulate lazy evaluation of lists in Links

with the lazy list library. In addition, there can be a very large number of events in a

stream, but generally only those events before a particular time are of interest. So we

modified the semantics of event streams from a source of events to a source of events

that occurred before a given time. As a result, an event stream is defined as a function

that takes an argument of Time and returns a lazy list of time-value pairs:

typename LEvent(a) = Time {} LLst((Float , a));

which can be seen as a behaviour:

typename LEvent(a) = Beh(LLst((Float , a)));

An event comes with a time stamp and a value which is the information with re-

spect to that event. One adjustment to the semantics of Classic FRP that dramatically

boosts the efficiency is the choice of making the list in descending order rather than

in ascending one according time stamps. This is because most of time, only the most

recent events are of concern. It helps that the newer event is always ”cons” to the head

of the event stream.

All kinds of events are captured by the framework and stored together in a record

ELLst.

typename ELLst = (mmEvts:LLst((Float , FPair)),

mdEvts:LLst((Float , ())),

muEvts:LLst((Float , ())));

The record contains three kinds of events currently captured by our framework, the

information they carried are listed bellow:

• Moving the mouse:

LLst(Float, FPair), under the label of mmEvts, which means x-y coordinate when

the mouse is moved.

• Pressing the mouse:

LLst((Float, ())), under the label of mdEvts, which has the occurrences of press-

ing mouse.
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• Releasing the mouse:

LLst((Float, ())), under the label of muEvts, which has the occurrences of press-

ing mouse

The design of separated event lists rather than an universal one mixing all three

kinds also concerns efficiency. Considering the amount of moving events greatly out-

numbers that of the others, finding the most recent pressing or releasing events in an

universal list would take considerable time even in a lazy list.

Listing 3.4:

1 fun compose(user) {

2 var mmE = mouseMoveLE(user);

3 var mmB = mouseMoveLB(mmE);

4 var circle = ellipse() ‘at‘ mmB

5 ‘sizeof ‘ const((50.0, 50.0))

6 ‘withStrokeWidth ‘ const(2.0);

7

8 topSVG(svg_child_id , circle ,

9 const (800.0), const (600.0))

10 }

Listing 3.4 creates an animation in which a circle is chasing the position of the

cursor. As illustrated in this program, the recored of event lists is supplied by the

framework to the drawing function compose(section 3.4.2), which is where program-

mers embody the model of the animation. The record has event lists of all kinds,

Nevertheless, it is not what programmers want. Most of time, a dedicated event stream

is the most useful. There are functions that give event streams of interest by looking

into the record:

sig mouseMoveLE: (Beh(ELLst)) {} LEvent(FPair)

sig mouseDownLE: (Beh(ELLst)) {} LEvent(())

sig mouseUpLE: (Beh(ELLst)) {} LEvent(())

mouseMoveLE is seen by programmers as the source of mouse moving events. mouseDownLE

and mouseUpLE represent the source of mouse pressing events and mouse releasing

events, respectively. If clicks are needed to be captured, using releasing events would

suffice as a click just means a releasing event after a pressing one.
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Since a cursor is always exhibited on the display and mouse moving events come

in continuously. It is nature to view the mouse position as a continuous values, a

behaviour. mouseMoveLB is defined for this purpose:

sig mouseMoveLB: (LEvent(FPair)) -> Beh (FPair)

On the first line of Listing 3.4, an event streams of mouse movement mmE is ini-

tialised. It is used to create the mouse moving behaviour mmB. The circle’s position is

set to mmB(line 4). Consequently, the circle would alway be located at the most recent

position of the mouse.

3.3.3 Reactivity

Reactivity is achieved by switch combinators that glue behaviours and event streams.

As described in 2.1.3, switch combinators have the semantics that exhibiting old be-

haviour until seeing the first event in an event stream, then switching a new behaviour

the event yields, and then doing the same to the rest in the stream.

The primitive switch combinator lswitcher is:

Listing 3.5: lswitcher

1 sig lswitcher : (Beh(a), LEvent(Beh(a))) -> Beh(a)

2 fun lswitcher(b, evt) {

3 fun (t:Float) {

4 fun f ((te, _)) {

5 te > t

6 }

7 var llst = ldropWhile(f, evt(t));

8 switch (llst()) {

9 case Nil ->

10 b(t)

11 case Cons((_, x), _) ->

12 x(t)

13 }

14 }

15 }

ldropWhile(line 7) discards the events occurred later than the time concerned. From

the perspective of our implementation, the semantics is simplified to either that the old
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behaviour continues if there is no such event in the event stream, or the new behaviour

yielded by the last event in the stream.

Listing 3.6 is drawn to explain the usage of lswitcher and event handlers. It dis-

plays a circle whose color will change from red to green for good after a mouse click.

Listing 3.6: lswitcher example

1 fun compose(user) {

2 var muE = mouseUpLE(user);

3

4 var f = fun (_) { const("green") };

5 var clr = const("red") ‘lswitcher ‘ mapLE(f, muE);

6

7 var circle = ellipse() ‘at‘ const((100.0, 100.0))

8 ‘sizeof ‘ const((50.0, 50.0))

9 ‘withStrokeWidth ‘ const(2.0)

10 ‘withColor ‘ clr;

11

12 topSVG(svg_child_id ,

13 circle ,

14 const (800.0), const (600.0))

15 }

mapLE on line 5 is an event handler responding to events. As explained in section

2.1.3, different handlers are interested in different part of information carried in an

event. The most general handler, like (+=>) in Fran, is handleLE. It handles per occur-

rence of the event by replacing the information with the return value of a user-supplied

function. The user-supplied function receives time stamp and information carried by

an event and response accordingly.

Listing 3.7: handle

1 sig handleLE : ((Float , a){} b, LEvent(a)) -> LEvent(b)

2 fun handleLE(f, evt) {

3 fun (t:Float) {

4 var f2 = fun ((te, a)) {

5 (te, f(te, a))

6 };

7 lmap(f2, evt(t))

8 }

9 }
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mapLE is a rather less general but commonly used handler. It is similar to handleLE

except that the user-supplied function does not care about the time stamp of the event.

sig mapLE : ((a){} b, LEvent(a)) -> LEvent(b)

For situations where the information of an event does not matter, justLE helps. It

replaces the information with whatever supplied by the user.

sig justLE : (LEvent(a), b) -> LEvent(b)

In the Listing 3.6, the new color of circle does not depend on the information

carried in a mouse releasing event so that line 4 and line 5 can be simplified by justLE:

var clr = const("red") ‘lswitcher ‘

justLE(muE, const("green"));

In addition to these handlers that have equivalent counterparts in Fran, filterLE is

developed:

sig filterLE : ((Float , a){} Bool , LEvent(a)) -> LEvent(a)

It acts as a filter on an event stream and preserves only those events that passes

the user-supplied predicate. The user-supplied predicate decides whether to accept an

event by the time stamp and information of it.

Events of mouse pressing and releasing do not carry information along with them

because they do not have to. We can take a snapshot of the behaviour that has the value

interested by the lsnapshot operator:

sig lsnapshot : (LEvent(a), Beh(b))  LEvent((a, b))

sig lsnapshot2 : (LEvent(a), Beh(b))  LEvent(b)

Since a behaviour evaluates to a value over continuous time. There is always a

value when some event happens during that time. In the case of getting position when

pressing the mouse, we can take the snapshot of the mouse moving behaviour:

var pressPosE = mdE ‘lsnapshot ‘ mmB;

Then we get an event stream contains information of both the pressing event and

the position of the mouse at that time. Pressing event does not have anything we are

interested, so we can just use lsnapshot2 to only obtain the position instead. It is

common that programmers want a value switching to whatever an event carries. Such

operator is called lstepper and is a variant of lswitcher:
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Listing 3.8: lstepper

1 sig lstepper : (a, LEvent(a)) -> Beh(a)

2 fun lstepper(a, evt) {

3 lswitcher(const(a), mapLE(const , evt))

4 }

The definition of mouseMoveLB mentioned in section 3.3.2 illustrates the usage of

lstepper:

Listing 3.9: mouseMoveLB

1 sig mouseMoveLB: (LEvent(FPair)) -> Beh (FPair)

2 fun mouseMoveLB(mmE) {

3 (0.0, 0.0) ‘lstepper ‘ mmE

4 }

The value of mouse position behaviour is initialised at (0.0, 0.0), once the cursor

moves inside the display area where moving event handler is installed(section 3.4.1).

The mouse position behaviour’s value immediately switches to the value carried by the

most recent mouse moving event.

3.4 Skeleton of Framework

Our goal is to providing means for developers to program animations easily. Unfor-

tunately, to achieve this goal, we have to at this stage enforce certain layout of the

source code. The skeleton is show in Listing 3.10. every function inside will be dis-

cussed. Surely the liberty of programming style is sacrificed slightly, however, we will

be rewarded with the expressiveness of the model of animation.

Listing 3.10: Layout of code

1 fun container() client {

2 ......

3 }

4

5 fun evtMgr(evts:ELLst) client {

6 ......

7 }



Chapter 3. Design and Implementation 32

8

9 fun drawInit(user , scene , dura) client {

10 ......

11 }

12

13 fun compose(user) client {

14 ......

15 }

3.4.1 Customising Template

The animation program will have to generate a legal HTML document. We provides a

basic template called container that must be incorporated into the program.

Listing 3.11: Container

1 fun container() client {

2 var mouseMgr = spawn { evtMgr((mmEvts = lnil(),

3 mdEvts = lnil(),

4 muEvts = lnil())) };

5 var user = createE(mouseMgr);

6

7 <#>

8 <div id="svgbasics" >

9 <svg xmlns="http://www.w3.org/2000/svg" version ="1.1"

10 xmlns:xlink="http://www.w3.org/1999/xlink"

11 width="800" height ="600"

12 viewBox="0 0 800 600"

13

14 l:onmousedown="{

15 mouseMgr ! MDown(intToFloat(getTime(event)), ())}"

16 l:onmouseup="{

17 mouseMgr ! MUp(intToFloat(getTime(event)), ())}"

18 l:onmousemove="{

19 mouseMgr ! MMove(intToFloat(getTime(event)),

20 (intToFloat(getPageX(event)),

21 intToFloat(getPageY(event))))}" >

22

23 <g id="{svg_parent_id}"> </g>

24 </svg>

25 </div>
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26 <button id="press1" type="button"

27 l:onclick="{

28 ignore(spawn { drawInit(user , compose , 30000) }) }">

29 draw image </button >

30 </#>

31 }

In Listing 3.11, container contains of two parts. The first half consists of the work

of initialisation. Firstly, a permanent process(evtMgr) is spawned. Then the driver for

querying events is set up.

The other half is the XML value that will be embedded in the web page. By virtue

of XML quasi(section 2.2.1.3), Links code can be conveniently embedded inside XML

value. A permanent SVG node is here for having event handlers that receive user input

events and send them to the event managing process(evtMgr). This is done by using

Links’ l-event attributes(section 2.2.1.3) to install event handlers along with other at-

tributes of the svg element. Currently, there are three kinds of user input events being

handled, namely onmousemove, onmousedown and onmouseup. Noticing that because the

message passing operator (!) inside handlers runs asynchronously(section 2.2.1), the

web page could be always responsive.

Besides the permanent SVG, a button is embedded as well(line 26 to line 29). In

response to pressing the button, a drawing process will be spawned to evaluate drawInit

. The button is optional, but programmers should find an adequate way to trigger the

drawing process.

3.4.2 Processes

As shown in Figure 3.2, our framework mainly relies on three processes to cooperate

with each other – the main process, the event manager and the drawing process.

The main process is in charge of calling the template(container) as described in

section 3.4.1 to perform framework initialisation, including the spawning event man-

ager and event handlers that accept and forward the user input events to the event

manager.

The event manager(evtMgr), is defined in Listing 3.12. Its argument evts is a ELLst

record(section 3.3.2) that has all events coming from the main process. evtMgr also

responses to queries for events collected. A query comes in with a time stamp. Event

manager then responses with all the events coming in earlier then the time stamp.



Chapter 3. Design and Implementation 34

Figure 3.2: Processes and Messaging

Owing to the design of separated, descending ordered lazy lists discussed in section

3.3.2, evtMgr reduces the cost of operations on ELLst to the minimum. evtMgr responses

queries for events(MQuery) with events in separated lists before the given time. This

operation in practical only looks up recent events which were attached to the front of

the lazy list when user events MMove, MDown and Mup came in.

Listing 3.12: Event manager

1 fun evtMgr(evts:ELLst) client {

2 receive {

3 case MQuery((t, proc)) ->

4 var f = fun ((t2, _)) {

5 t2 > t

6 };

7 var mmEvts2 = ldropWhile(f, evts.mmEvts);

8 var mdEvts2 = ldropWhile(f, evts.mdEvts);

9 var muEvts2 = ldropWhile(f, evts.muEvts);

10 proc ! (mmEvts = mmEvts2 , mdEvts = mdEvts2 , muEvts

= muEvts2);
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11 evtMgr(evts)

12 case MMove(new) -> # (Float , (Float , Float))

13 evtMgr((evts with mmEvts = lcons(new, evts.mmEvts)))

14 case MDown(new) -> # (Float , ())

15 evtMgr((evts with mdEvts = lcons(new, evts.mdEvts)))

16 case MUp(new) -> # (Float , ())

17 evtMgr((evts with muEvts = lcons(new, evts.muEvts)))

18 }

19 }

container decides when and how to invoke the drawing process evaluating drawInit

, which is given in Listing 3.13. Line 5 is the core expression. With the arguments

supplied by container(line 28 in Listing 3.11), the core expression actually first calls

createE with the current time, which subsequently queries events from evtMgr in a syn-

chronous manner(section 2.2.1.2). Then it supplies the result to the modeling function

compose.

compose is where programmers use the constructs of behaviours and events to de-

scribe the model of animation. It returns the top-level behaviour that encodes all de-

pendencies of expressions inside itself. The framework at this point evaluates the result

with the current time to get the XML value svgXml, which will be used to update the

DOM of the document.

drawInit finally calls draw which performs almost the same operation. draw then

calls itself recursively until either the drawing process terminates or the animation

expires. In other words, the way we produce the animating effect is continuously

evaluating the modeling function and updating the DOM structure of the web page

with the result.

Listing 3.13: Drawing process

1 fun drawInit(user , scene , dura) client {

2 ......

3 var now = clientTime();

4 var nowf = intToFloat(now);

5 var svgXml = scene(user(nowf))(nowf);

6 replaceNode(svgXml , getNodeById(svg_child_id));

7 ......

8 draw(user , scene , now + dura)

9 }
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10

11 fun createE(mgr) (t:Float) {

12 spawnWait {

13 mgr ! MQuery(t, self());

14 var evts = recv ();

15 fun (t2:Float) {

16 evts

17 }

18 }

19 }

20

21 fun compose(user) {

22 ......

23 topSVG(svg_child_id , ......)

24 }
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Examples

Four applications will be presented to support our argument that programmers can

create animation in the framework with expressions in succinct syntax. All of them

only differ in their modeling functions compose.

4.1 Karate Kicks

The Karate Kicks application displays two figures on the screen. The bigger one moves

steadily and diagonally. The smaller figure orbits the bigger one. This simple program

demonstrates the power of composing behaviours one on top of the other.

Figure 4.1: Continuous screenshots of Karate Kicks

Listing 4.1: Karate Kicks

1 fun compose(user) {

2 # [-1, 1]

3 var wiggle = sin;

4 var waggle = cos;

5

6 # [0, 2]

7 var wiggle2 = const(1.0) ‘fAddB ‘ wiggle;

8 var waggle2 = const(1.0) ‘fAddB ‘ waggle;
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9

10 var fig = image() ‘withImage ‘ const("images/karate.png");

11

12 # -----------------------------------

13 # modeling the bigger figure

14 # -----------------------------------

15 var x = slowerB(const (200.0) ‘fMulB ‘ wiggle2 ,

16 const (5000.0));

17 var y = x;

18 var bigKick = fig ‘at‘ toPairB(x, y)

19 ‘sizeof ‘ const((100.0, 100.0));

20

21 # -----------------------------------

22 # modeling the smaller figure

23 # -----------------------------------

24 var x2 = x ‘fAddB ‘ slowerB(wiggle ‘fMulB ‘ const (100.0),

25 const (300.0));

26 var y2 = y ‘fAddB ‘ slowerB(waggle ‘fMulB ‘ const (100.0),

27 const (300.0));

28 var smallKick = fig ‘at‘ toPairB(x2, y2)

29 ‘sizeof ‘ const((50.0, 50.0));

30

31 topSVG(svg_child_id ,

32 smallKick ‘over ‘ bigKick ,

33 const (800.0), const (600.0))

34 }

A few useful primitives are defined at the beginning. wiggle and waggle are aliases

of the built-in trigonometric functions sin and cos, respectively. As described in section

3.1, they can be treated as behaviours naturally as they have compatible representation.

They are evaluated to a value wiggling between -1 and 1 over time. wiggle2 and waggle2

adjust the range to 0 to 2.

On line 10, a constant behaviour of the image path is created. Following up are

expressions modelling the position and the size of the bigger figure. Firstly, the be-

haviour of the x coordinate of the figure is defined in terms of wiggle2 to get a value

wiggling between 0 and 400. The use of slowerB transforms the time frame so that the

value changes slowly. The behaviour of y coordinate is defined to be x. The size of

the bigger figure does not change over time, thus a constant behaviour suffices. Then

the behaviour of the bigger figure bigKick is defined with respect to the behaviours of
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position and size. As a result, th bigger figure that moves steadily from the top-left

corner to the bottom-right is created.

Next, the behaviour of the smaller figure is to be defined. The behaviour of its x

coordinate x2 depends on that of the bigger figure. No matter what x becomes, x2 is

shifted away a varying distance from it. The distance is wiggling between the value

from -100 to 100. This reveals the power of composing simple behaviours to form a

complex one. In the end, the behaviour of smaller figure smallKick is created in the

same fashion as the bigger one.

4.2 Chasing Cursor

Chasing Cursor is an application that has a circle that chases after the mouse.

Figure 4.2: Continuous screenshots of Chasing Cursor

The mouse moving behaviour mmB is first created and initialised by mouse moving

event stream mmE. It will be set to the position of the circle. To make the visual effect

more significant, we slightly delay the time which the moving behaviour evaluates over

by delayB. So the position of the circle is always lagging behind the cursor unless the

mouse stops moving.

An text revealing current mouse position is displayed on the lower right side of

the cursor. fstB and sndB are used to accessed the x and y coordinate behaviour of

the moving behaviour respectively. The coordinate behaviours is converted and con-

catenated to a string behaviour coord by the inline function appendStringB. A position

behaviour coordPos is obtained by adjusting the mouse moving behaviour to the lower

right slightly. coord is next attached to a shape behaviour text which is positioned at

coordPos.

Listing 4.2: Chasing Cursor

1 fun compose(user) {

2 var mmE = mouseMoveLE(user);
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3 var mmB = mouseMoveLB(mmE);

4

5 # -----------------------------------

6 # a circle chasing mouse

7 # -----------------------------------

8 var circle = ellipse() ‘at‘ delayB(mmB, const (300.0))

9 ‘sizeof ‘ const((50.0, 50.0))

10 ‘withColor ‘ const("red");

11

12 # -----------------------------------

13 # text revealing mouse position

14 # -----------------------------------

15 fun appendStringB(sB1, sB2) {

16 fun (t:Float) {

17 sB1(t) ˆˆ ", " ˆˆ sB2(t)

18 }

19 }

20 var coord = appendStringB(ftosB(fstB(mmB)),

21 ftosB(sndB(mmB)));

22 var coordPos = toPairB(fstB(mmB) ‘fAddB ‘ const(30.0),

23 sndB(mmB) ‘fAddB ‘ const(20.0));

24 var displayCoord = text() ‘at‘ coordPos

25 ‘withText ‘ coord

26 ‘withStrokeWidth ‘ const(0.0)

27 ‘withFontSize ‘ const(16.0)

28 ‘withColor ‘ const("black");

29

30 topSVG(svg_child_id ,

31 displayCoord ‘over ‘ circle ,

32 const (800.0), const (600.0))

33 }

4.3 Pressing Button

In this example, a simple reactivity is presented. It replaces two button images with

each other to mimic the visual effect of pressing button.

Two constant behaviour of image paths are created on line 8 and 9. Line 10 to

17 defines the behaviour before, while, and after pressing the button. Line 17 means

that btnFloat is exhibited until seeing a mouse pressing event in the mouse down event
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Figure 4.3: Screenshots of before and while pressing the button

stream mdE. Then the following variation is defined in the inline function flip, in

which btnPressed is displayed until a subsequent mouse releasing event turning up in

the mouse up event stream muE, then it switches back to btnFloat.

Listing 4.3: Pressing Button

1 fun compose(user) {

2 var mdE = mouseDownLE(user);

3 var muE = mouseUpLE(user);

4

5 # -----------------------------------

6 # images flipping to mimic the effect of pressing button

7 # -----------------------------------

8 var btnFloat = const("images/btn.png");

9 var btnPressed = const("images/btn_pressed.png");

10 fun flip (td, _) {

11 fun afterDown(tu, _) {

12 tu > td

13 }

14 btnPressed ‘lswitcher ‘

15 justLE(filterLE(afterDown , muE), btnFloat)

16 }

17 var img = btnFloat ‘lswitcher ‘ handleLE(flip , mdE);

18

19 var button = image() ‘at‘ const((100.0, 100.0))

20 ‘sizeof ‘ const((90.0, 40.0))

21 ‘withImage ‘ img;

22

23 topSVG(svg_child_id ,

24 button ,

25 const (800.0), const (600.0))

26 }
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4.4 Magnifier

The last application demonstrates a magnifier on an image. Users can drag the small

gray frame on the image. Meanwhile, what is inside the frame will be magnified and

displayed next to the image. Besides operators for reactivity, it also illustrates the

usage of transformation functions.

Figure 4.4: Screenshots of Magnifier

The behaviour drag2mmB is constantly evaluated to the position of the gray frame’s

top-left corner. Its value varies when the user drags the frame as it is defined between

line 10 to 19. Lines 18 says that it stays at (100.0, 100.0) until seeing a mouse pressing

event in the mouse down event stream mdE because the user presses the mouse.

Then the following variation of drag2mmB is defined in the inline function drag, in

which the position of the frame coincides the position of the cursor as long as the user

has not released the mouse. Once it sees an subsequent releasing event in the mouse
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up stream muE, it immediately takes a snapshot of of the cursor’s position(line 16) as

the last location after dragging.

Next a static image is created. On top of it, the gray frame is created and located at

the position behaviour drag2mmB.

Observing that the top-left corner of the frame can be seen as the origin of a new

coordinate system, we make a copy of the image and translate the top-left corner of

the frame to the origin and then scale it to get a bigger image imgBig. In the meantime,

we put this transformed copy in a nested svg magnified. Because the nested svg has an

smaller size than the scaled image, we virtually get a cropped and magnified image.

Listing 4.4: Magnifier

1 fun compose(user) {

2 var mdE = mouseDownLE(user);

3 var muE = mouseUpLE(user);

4 var mmE = mouseMoveLE(user);

5 var mmB = mouseMoveLB(mmE);

6

7 # -----------------------------------

8 # dragging effect

9 # -----------------------------------

10 fun drag (td, _) {

11 fun afterDown(tu, _) {

12 tu > td

13 }

14 mmB ‘lswitcher ‘

15 mapLE(const ,

16 filterLE(afterDown , muE) ‘lsnapshot2 ‘ mmB)

17 }

18 var drag2mmB = const((100.0, 100.0)) ‘lswitcher ‘

19 handleLE(drag , mdE);

20

21 # -----------------------------------

22 # image and a small frame on its top

23 # -----------------------------------

24 var img = image() ‘withImage ‘ const("images/kenting.jpg")

25 ‘at‘ const((0.0, 0.0))

26 ‘sizeof ‘ const((400.0, 300.0));

27 var frame = rect() ‘at‘ drag2mmB

28 ‘sizeof ‘ const((80.0, 60.0))

29 ‘withStrokeWidth ‘ const(2.0)
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30 ‘withStroke ‘ const("gray")

31 ‘withColor ‘ const("none");

32

33 # -----------------------------------

34 # transform the image

35 # -----------------------------------

36 var negx = const(0.0) ‘fSubB ‘ fstB(drag2mmB);

37 var negy = const(0.0) ‘fSubB ‘ sndB(drag2mmB);

38 var imgBig = img ‘translate ‘ toPairB(negx , negy)

39 ‘scale ‘ const((4.0, 4.0));

40

41 # -----------------------------------

42 # place the transformed image in a nested svg

43 # -----------------------------------

44 var magnified = svg(imgBig) ‘at‘ const((410.0, 0.0))

45 ‘sizeof ‘ const((320.0, 240.0));

46

47 topSVG(svg_child_id ,

48 frame ‘over ‘ img ‘over ‘ magnified ,

49 const (800.0), const (600.0))

50 }
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Related Work

Many researches after Classic FRP surround the topic of efficiency. They exert them-

selves to define more suitable semantics. Conal’s latter paper Push-Pull Functional Re-

active Programming presents a way to implement FRP that combines data-driven(push)

and event-driven(pull) evaluation, in which values are recomputed only when necessary[4].

More recent works turn to Arrowized FRP(AFRP) based on the arrow combinators in

Haskell to construct the reactive system[16; 18].

There are efforts being made to bring FRP to general purpose programming lan-

guages such as Frappé that integrates FRP into the Java programming language[19].

With a similar goal to our framework, FlapJax attempts to bring FRP to general Web

application on top of JavaScript[23]. Comparing to our work, FlapJax has a broader ap-

plicative usage in that it is a general purpose library in JavaScript whereas this project

focuses on the domain of animation in Links. Despite that, the two projects adopt

similar semantics for behaviours and event streams.

45



Chapter 6

Future Development

A working framework has been prototyped and tested on a few applications, but there

is room for improvement. As to the framework itself, we have a few directions:

• Extending the functionality:

Many visual effects rely on velocity behaviours. This relies on the semantics

of integration that involves accumulating the values that a behaviour had over a

period. The framework will be more powerful if it is implemented.

Currently, the APIs of the framework only deal with past events. It is expected

to have ones that handle future events.

In addition, it will be more advantageous if several combinators like choice op-

erators and predicates(section 2.1.2) can be developed in the future.

• Refining the types:

Given that Links is a strongly typed language, it is a shame that we have not made

the most use of it. Many types check because they are defined imprecisely. For

instance, String is used at where the type of Color would be more appropriate.

This raises the difficulty of debugging if a program is incorrectly written.

• Dealing with the space leak:

We have endeavoured to make sure the performance of the framework to be ac-

ceptable. However, we could be at stake of a space leak. A program with a

space leak is one that uses memory space so quickly that it detrimentally af-

fects performance[13]. Since we store the whole history of events, the steams

keep growing as more and more events are received. To deal with this problem,
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we may need to switch to the successors of Classic FRP or other FRP incarna-

tions(section 5).

Moreover, Links is a young programming language. As more and more features

are implemented in Links, our framework may be able to use them and thus need to

alter the design of its own. For example, one feature we are longing for is a overload-

ing mechanism as it would boost the expressiveness of our framework and therefore

fundamentally change our design of APIs.

It is also possible that we can take part of our work to other general purpose func-

tional programming languages. Many of them have proved to be powerful in the con-

text of Web services. When it comes to the user interface for the Web application,

a function animation framework can be one of the choices if presentation and user

interaction are both taken into account.



Chapter 7

Evaluation

We have reviewed the semantics of Classic FRP. A animation framework is imple-

mented to show how to make sense of FRP in the context of Web applications. The

details for encapsulating SVG as behaviours have been discussed. Utilities that assist

composing behaviours have been explained. With the consideration of efficiency, we

used lazy lists to be the backbone of our design of event streams and reactivity. Finally,

four applications have been displayed to demonstrate how our work can facilitate the

modeling process of animations. Overall, we have achieved the objectives set up in

section 1.3. Namely,

• A framework comes with a set of APIs conforming to the semantics of FRA.

The complete list of APIs is listed in Appendix A.

• APIs contains a combinatoric library for most of SVG primitives to create, ma-

nipulate and compose SVG shapes. Either static or dynamic content can be

modeled by the APIs.

• Four working application are developed to demonstrate the ability to manipulate

SVG primitives dynamically and shows the reactivity of the framework.
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Conclusion

Programming SVG directly in Links by DOM manipulation undermines the declar-

ative nature of both languages. Our approach of incorporating FRP into Links is to

design a functional animation framework that separates the model and presentation of

animations. It enables developers to easily produce animations in the program. Based

on our work so far, applications of several kinds can be produced, In the future, we can

improve the framework and continue to explore the possibility of FRP.
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APIs

# ====================

# Type definitions

# ====================

typename Time = Float;

# Behaviour

typename Beh(a) = (Time){}i>a;

typename FPair = (Float , Float);

typename Points = [FPair];

typename TForm = [|Rotate:Beh((Float , FPair))

| Translate:Beh(FPair)

| Scale:Beh(FPair)

| SkewX:Beh(Float)

| SkewY:Beh(Float)|];

typename FontWeight = [|Normal:() | Bold:()|];

typename FontStyle = [|Normal:() | Italic:()|];

typename Attrs = (posX:Beh(Float), posY:Beh(Float),

height:Beh(Float), width:Beh(Float),

fill:Beh(String), hrefImg:Beh (String),

stroke:Beh(String), strokeWidth:Beh(Float),

transform:[TForm],

points:Beh(Points),

text:Beh(String),

ffamily:Beh(String), fsize:Beh(Float),

fweight:Beh(FontWeight),
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fstyle:Beh(FontStyle));

# Shape behaviour

typename SBeh = (Attrs){} Beh(Xml);

# Lazy list

typename LLst(a) = mu x . ((){}˜>[|Nil|Cons:(a,x)|]);

# Event stream

typename LEvent(a) = Beh(LLst((Float , a)));

# Record of event stream of all kinds

typename ELLst = (mmEvts:LLst((Float , FPair)),

mdEvts:LLst((Float , ())),

muEvts:LLst((Float , ())));

# ========================================

# Behaviour APIs(section 3.1)

# ========================================

sig fstB : (Beh((a, b))) -> Beh(a)

sig sndB : (Beh((a, b))) -> Beh(b)

sig toPairB : (Beh(a), Beh(b)) -> Beh((a, b))

sig toBPair : (Beh((a, b))) -> (Beh(a), Beh(b))

sig toListB : ([Beh((a, b))]) -> Beh([(a, b)])

# Uniry lifting operator

sig const : (a) -> Beh(a)

# Integer arithmetic operators

sig iAddB : (Beh(Int), Beh(Int)) -> Beh(Int)

sig iSubB : (Beh(Int), Beh(Int)) -> Beh(Int)

sig iMulB : (Beh(Int), Beh(Int)) -> Beh(Int)

sig iDivB : (Beh(Int), Beh(Int)) -> Beh(Int)

sig iModB : (Beh(Int), Beh(Int)) -> Beh(Int)

# Float arithmetic operators

sig fAddB : (Beh(Float), Beh(Float)) -> Beh(Float)

sig fSubB : (Beh(Float), Beh(Float)) -> Beh(Float)

sig fMulB : (Beh(Float), Beh(Float)) -> Beh(Float)

sig fDivB : (Beh(Float), Beh(Float)) -> Beh(Float)

sig fModB : (Beh(Float), Beh(Float)) -> Beh(Float)
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# Convert Integer behaviour to Float behaviour

sig itofB : (Beh(Int)) -> Beh(Float)

# Convert Float behaviour to Integer behaviour

sig ftoiB : (Beh(Float)) -> Beh(Int)

# Convert Integer behaviour to String behaviour

sig itosB : (Beh(Int)) -> Beh(String)

# Convert Float behaviour to String behaviour

sig ftosB : (Beh(Float)) -> Beh(String)

# Time behaviour

sig time : () -> Beh(Float)

# Time transformation (section 3.1.1)

sig slowerB : (Beh(a), Beh(Float)) -> Beh(a)

sig fasterB : (Beh(a), Beh(Float)) -> Beh(a)

sig delayB : (Beh(a), Beh(Float)) -> Beh(a)

# SVG shape functions (section 3.2)

sig polyline : () -> SBeh

sig polygon : () -> SBeh

sig rect : () -> SBeh

sig ellipse : () -> SBeh

sig text : () -> SBeh

sig image : () -> SBeh

sig svg : (SBeh) -> SBeh

# Shape behaviour manipulation (section 3.2.1)

sig at : (SBeh , Beh(FPair)) -> SBeh

sig sizeof : (SBeh , Beh(FPair)) -> SBeh

sig over : (SBeh , SBeh) -> SBeh

# Set up attributes of shape behaviours (section 3.2.1)

sig withImage : (SBeh , Beh(String)) -> SBeh

sig alongPoints : (SBeh , Beh(Points)) -> SBeh

sig withColor : (SBeh , Beh(String)) -> SBeh

sig withText : (SBeh , Beh(String)) -> SBeh

sig withFontFamily : (SBeh , Beh(String)) -> SBeh

sig withFontSize : (SBeh , Beh(Float)) -> SBeh

sig withFontWeight : (SBeh , Beh(FontWeight)) -> SBeh

sig withFontStyle : (SBeh , Beh(FontStyle)) -> SBeh

sig withStroke : (SBeh , Beh(String)) -> SBeh

sig withStrokeWidth : (SBeh , Beh(Float)) -> SBeh
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# Transformation (section 3.2.2)

sig skewX : (SBeh , Beh(Float)) -> SBeh

sig skewY : (SBeh , Beh(Float)) -> SBeh

sig scale: (SBeh , Beh(FPair)) -> SBeh

sig translate : (SBeh , Beh(FPair)) -> SBeh

sig rotateAbout : (SBeh , Beh(Float), Beh(FPair)) -> SBeh

sig rotate : (SBeh , Beh(Float)) -> SBeh

# ========================================

# Lazy list APIs(section 3.3.1)

# ========================================

sig lnil: () -> LLst(?)

sig lcons: (a, ?) -> LLst(a)

sig lhd: (LLst(a)) {}˜> a

sig ltl: (LLst(a)) {}˜> LLst(a)

sig llen: (LLst(a)) {}˜> Int

sig lmap: ((a) {}˜> b, LLst(a)) {}˜> LLst(b)

sig lfilter: ((a) {}˜> Bool , LLst(a)) {}˜> LLst(a)

sig lselect: (LLst(a), Int) {}˜> a

sig ltakeWhile: ((a) {}˜> Bool , LLst(a)) {}˜> LLst(a)

sig ldropWhile: ((a) ˜b˜> Bool , LLst(a)) -> LLst(a)

sig lfoldl: ((b, a) {}˜> b, b, LLst(a)) {}˜> b

sig lfoldr: ((a, b) {}˜> b, b, LLst(a)) {}˜> b

sig lappend: (LLst(a), LLst(a)) {}˜> LLst(a)

sig lreverse: (LLst(a)) {}˜> LLst(a)

sig lzip: (LLst(a), LLst(a)) {}˜> LLst((a, a))

sig lunzip: (LLst((a, b))) {}˜> (LLst(a), LLst(b))

# ========================================

# Event APIs(section 3.3.1)

# ========================================

# Event Handlers(section 3.3.3)

sig handleLE : ((Float , a){}˜>b, LEvent(a)) -> LEvent(b)

sig mapLE : ((a){}˜>b, LEvent(a)) -> LEvent(b)

sig justLE : (LEvent(a), b) -> LEvent(b)

sig filterLE : ((Float , a){}˜>Bool , LEvent(a)) -> LEvent(a)

# Switch combinators(section 3.3.3)

sig lswitcher : (Beh(a), LEvent(Beh(a))) -> Beh(a)

sig lstepper : (a, LEvent(a)) -> Beh(a)
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sig lsnapshot : (LEvent(a), Beh(b)) ˜> LEvent((a, b))

sig lsnapshot2 : (LEvent(a), Beh(b)) ˜> LEvent(b)

# Event stream constructors(section 3.3.2)

sig mouseUpLE: (Beh(ELLst)) {}˜> LEvent(())

sig mouseDownLE: (Beh(ELLst)) {}˜> LEvent(())

sig mouseMoveLE: (Beh(ELLst)) {}˜> LEvent(FPair)

sig mouseMoveLB: (LEvent(FPair)) -> Beh (FPair)



Appendix B

Online Materials

This project is hosted on www.github.com. All the examples can be browsed online:

• Karate Kicks:

Video: http://www.youtube.com/watch?v=V4usz6N5NQ4

Source: https://github.com/cfchou/links/blob/phase2/cgi-bin/ex karate.cgi

• Chasing Cursor:

Video: http://www.youtube.com/watch?v=pQi3QSyc4jA

Source: https://github.com/cfchou/links/blob/phase2/cgi-bin/ex cursor.cgi

• Pressing Button:

Video: http://www.youtube.com/watch?v=9VH0gRQTm4g

Source: https://github.com/cfchou/links/blob/phase2/cgi-bin/ex button.cgi

• Magnifier:

Video: http://www.youtube.com/watch?v=fkvkLnJAYlo

Source: https://github.com/cfchou/links/blob/phase2/cgi-bin/ex magnifier.cgi
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