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Abstract: Links is a functional programming language for creating web appli-
cations. From a single source program Links produces Javascript for the client,
SQL for database access, and an interpreted intermediate language for the server.
This report describes the implementation of a compiler for the Links intermedi-
ate language that targets OCaml. The goal is to improve the performance of
server-side code. The compiler is evaluated and found to improve performance
significantly over the interpreter. In addition, the report describes a new algo-
rithm for efficiently boxing values that was developed as part of the compiler.
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1. Introduction

Links[1] is a language that is designed to make web programming easier. Web
programs usually consist of three tiers: the client front-end, the server in the
middle, and a database back-end. This causes problems, as all three tiers are
programmed using different languages with different styles. Links allows pro-
grammers to write code in a single functional language for all three tiers. From a
single source program Links produces Javascript for the client, SQL for database
access, and an interpreted intermediate language for the server.

This report describes the development of a compiler for the Links intermediate
language that targets OCaml. Currently Links is interpreted on the server, and
this is slow, particularly for CPU-intensive algorithmic code. The primary pur-
pose of the compiler is to improve the speed at which Links can run on the server,
making it more practical to write computationally expensive server-side code.

1.1 What Has Been Done

A compiler from the Links intermediate language (IR) to OCaml[2] has been
implemented, along with a small library of primitive functions and a run-time
system.

The compiler currently lacks web 2.0-style Javascript to server function calls,
SQL query generation and concurrency. However, it can successfully compile
programs that do not use these features. Compiled programs can be run either
interactively or as CGI programs under a webserver.

Additionally, a new boxing optimisation was designed during development of the
compiler. This is intended to efficiently add boxing to compiled code.

1.2 Report Structure

The report is split into several chapters. The first gives some background about
the project in order to place the undertaken work in context. This includes de-
scribing the Links language, its current implementation, and a brief introduction
to various concepts and ideas upon which the project relies.

The second chapter describes a simple pretty-printer for the intermediate repre-
sentation used by the Links, along with an example of pretty-printed output.
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2 1. INTRODUCTION

The third chapter introduces the compiler, first giving a high-level description
followed by more in-depth details. Details of the translation are given, followed
by a descriptions of how values are boxed and represented. The primitives library
and run-time system are then presented.

The fourth chapter introduces a boxing optimisation. It describes the algorithm
at a high level.

The fifth chapter evaluates the compiler by benchmarking it against the inter-
preter. It compares the execution speed of compiled and interpreted code and
shows that the project goal of improving performance has been achieved.



2. Background

2.1 Notation

To illustrate concepts, code samples are dotted throughout the report. Links and
OCaml code are typeset using a monospace font.

let square x = x * x

Examples involving the IR and target languages defined in Figures 4.1 and 4.2
are typeset like so

letrec square = x ∗ x

and algorithms operating on IR and target terms are typeset using pattern-
matching. Vector notation, ~x is used to denote lists. The cons operator for
lists is written as xnew :: ~x, and this same notation is used for pattern matching
against the head and tail of a list. A list of elements is written as [x1, x2, x3]. The
empty list is written []. This notation for lists is occasionally abused by leaving
out the square brackets when it is obvious what is going on.

2.2 Links the Language

2.2.1 Web Programming

Web programming is traditionally split into three tiers. These are the front-end,
usually written as a mixture of HTML and Javascript, the middle tier, written
in a server-side language such as PHP, Java, Python or Ruby, and the back-end,
which is normally a database queried with SQL.

This proliferation of languages and mindsets can cause problems. Effective web
programmers must be proficient in several paradigms and must continually switch
between them. It is also difficult to share code between tiers, which can lead to
code duplication and an unnatural program structure.

Furthermore, the three tiers must communicate. This often involves the program-
mer juggling a myriad of different types between languages, usually writing the
tedious interfacing and conversion code by hand. It can also involve attempting
to reconcile fundamentally different views of the world—for instance, cramming
SQL’s relational view of data into the object-oriented view of Java or Python.

3



4 2. BACKGROUND

Links is a language designed to overcome these problems. It allows programmers
to write code for all three tiers in a single typed functional language. It compiles to
Javascript and HTML for the client, and to an interpreted intermediate language
with automatically generated SQL on the server. Communication between the
tiers is handled transparently and in a type-safe way.

2.2.2 CGI

CGI[3] is a standard interface that allows web servers to execute external pro-
grams in order to service a request from a client. The server communicates with
the external program via a set of environment variables that give details of the
request. CGI parameters can be passed as part of the environment. These are
a set of name-value pairs provided by the client request, usually representing a
form post. A CGI program may inspect these parameters along with the rest of
the environment, and may consult databases, read files etc. before deciding how
to respond. The response is written to standard output and is then delivered to
the client.

CGI is the most widely supported method for providing dynamic web pages and
web applications. Both compiled and interpreted Links programs run with CGI.

2.2.3 Database Queries

Links allows the programmer to write database queries in a functional style, using
effect annotations in the type-system to guarantee statically that code intended
for the database compiles into efficient SQL.

Database querying has recently undergone an overhaul. A new system of typing
and rewrite rules is now used that allows Links to produce efficient SQL queries
while at the same time supporting the high-level abstractions of functional pro-
gramming.

This system requires significant run-time support. It it is not possible to statically
compile all queries into SQL, so a query compiler must be embedded into the
Links run-time system. This is not unlike the Microsoft .NET LINQ[4] system.

Due to this requirement for run-time support, implementing querying in the
compiler would be a substantial piece of work. Therefore, no attempt was made
to include SQL generation.
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2.2.4 Concurrency

Links has an implementation of concurrency. The programmer is able to spawn
new processes and send messages between them using a mailbox system.

Links implements concurrency in a serialised way: Occasionally the running pro-
cess is suspended and a new process takes its place.

The compiler supports the mechanisms required for concurrency, but the run-time
system currently lacks support. This would be fairly straightforward to add.

2.2.5 AJAX calls

In Links, functions are annotated to say whether they should be run on the client
or on the server (or both). Functions which should be run on the client are com-
piled to javascript. Links allows client functions to seamlessly call functions on
the server and vice-versa. This functionality takes advantage of modern browsers’
XMLHTTPRequest ability, which allows Javascript code to make asynchronous
HTTP requests to fetch data from a server. This data can then be used to update
pages in-place rather than requiring a browser refresh.

These asynchronous requests are known as AJAX requests, and are a common
component of many web 2.0 -style web applications. In traditional sites, the
browser makes a single request per page. Web 2.0 sites generally act in a more
dynamic, event-driven way, and the ability to update content dynamically allows
web 2.0 sites to more closely emulate desktop applications.

To use AJAX, normally an explicit HTTP request is made with Javascript to a
resource on the server. This can involve a lot of interface and type-conversion
code. The fact that Links can eliminate this tedium with its ability to seamlessly
call functions on the server from the client and vice-versa means it is particularly
well-suited for programming web 2.0 applications.

The compiler currently lacks support for AJAX calls. The mechanics are imple-
mented, but the necessary interfacing code between the Javascript client code
and the compiled server code does not yet exist.

2.3 The Current Links Implementation

To serve web pages, Links runs as a CGI program. Upon invocation, a Links
source program is read and compiled into an intermediate representation (IR)
tree. The client portions of the code are then compiled to Javascript by a
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Javascript compiler, and the server-side portion is run by directly interpreting
the IR tree. Any output is then passed to the browser.

Links also supports being run from the command line. Given an input file, it
is treated as a program, and the server-side component is executed immediately.
The value this returns is then printed.

Links also supports running in a read-eval-print loop that allows expressions to
be entered and evaluated immediately.

2.4 Links and Continuations

2.4.1 Continuations

Conceptually, a continuation represents “the rest of a computation”—that part of
a computation that control should pass to next. In this way, continuations are
a representation of a program’s current state—they capture what has been done
so far, and what still needs to be done.

In some programming languages, Links included, continuations are first-class.
The current continuation at any point can be captured and bound to a variable.
It can then be passed around like any other variable.

Captured continuations can be used as a powerful form of control flow. When
a continuation is invoked, execution jumps to the point and state at which the
continuation was captured. In Links, continuations are captured using the escape
construct, which binds the current continuation to a variable. Continuations are
represented as single-argument functions, and applying them invokes the contin-
uation. The argument becomes the value returned by the escape expression.

The function in Figure 2.1 shows how to perform non-local escape using an ex-
plicit continuation. It returns true if the passed-in list contains all true values,
otherwise it returns false.

The continuation is bound to the variable esc inside the escape construct. The
function that is mapped over the list will invoke the continuation with argument
false if it finds that the current item is false. This causes execution to immedi-
ately continue just after the escape expression, with ret bound to false. If the
map call completes, the continuation was not invoked, and so there are no false
values in the list and true is returned.
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fun all_true(l) {
var ret = escape esc in {

var l = map(
fun (x) {

if (not(x)) esc(false) else true
},

l);
true

};
ret

}

Figure 2.1: A function demonstrating the use of continuations for non-local es-
cape.

2.4.2 How Continuations Are Used in Links

Concurrency in Links is implemented with continuations. Each process can be
represented by its continuation, and every so often the current process is “swapped
out”, its continuation being swapped with that of a waiting process.

Continuations are also used for client-server communication. When a client func-
tion is called from the server (or vice-versa), the current continuation is saved
behind the scenes and the call is made on the next client request. When (and
if) a result is obtained, the stored continuation is invoked, allowing the caller to
continue with the result of the function call. This hides the stateless nature of
HTTP and makes client-server or server-client calls appear to the programmer
like normal, stateful function application.

A similar idea is used for form processing. Formlets [5], the standard means for
abstracting web forms in Links, operate by saving the current continuation when
rendering a form and then invoking that continuation when the form is posted in
order to process the data.

2.4.3 Serialized Continuations

The idea of using continuations to elegantly handle the stateless nature of HTTP
is not new[6][7][8]. However, most implementations store the server-side continu-
ations in memory between client requests. Continuations are quite heavy-weight,
and many may need to be stored, which can place strain on server resources. It
can also affect user experience—continuations will be discarded from memory at
some point, often after a certain time of client inactivity. This can cause pages
to become invalid. Storing continuations in this way also impedes scalability. In
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order to scale an application beyond a single server, techniques for sharing con-
tinuations amongst servers must be implemented. This can become a bottleneck.

Links solves these problems by serialising continuations into a string and then
storing them on the client. With each request, the client sends a serialised con-
tinuation, which is then deserialised and applied. This means the server does not
need to store any state at all, which allows trivial scaling to any number of web
servers.

2.5 ANF and CPS

Continuation-passing style[9], or CPS, is a style of programming in which contin-
uations are passed around explicitly. Continuations are represented as functions,
and instead of an expression returning a value, as in direct-style, it calls its con-
tinuation function with the result, which then continues with the computation.

CPS is sometimes used as the intermediate representation in compilers. One of
the reasons is that it guarantees that all arguments to functions are trivial—either
variables or constants, never more complicated expressions. This can simplify
program transformations.

The compiler’s target language is in CPS form because it gives explicit access to
the current continuation. It is therefore easy to make the continuation available
to programs as a first-class value, as required by Links. The current continuation
is made available to the program via a construct call/cc (call with current
continuation) which, given a function, calls it passing in the current continuation,
thus making it available to the programmer.

In CPS, all function calls are tail-calls. This is because “what to do next” is
explicitly passed to the function as its continuation.

A Normal Form (ANF) is another restricted form for programs, and is direct-style.
ANF[10] was created to try and keep only those aspects of CPS that are helpful
for compilation. For instance, in ANF, like in CPS, arguments to a function must
be simple, and as a result intermediate values used during computation must be
named.

The ANF restrictions can often make optimisations such as data-flow analysis
easier, and ANF is in fact closely related to an intermediate language used for
optimisation in imperative-language compilers called SSA[11].
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2.5.1 The Links Prelude

In addition to primitives, a set of functions written in Links is made available to
every program. This serves the purpose of a standard library, and is called the
Prelude.

2.6 The Compiler and Where It Sits

2.6.1 Choice of Target

The choice of target for a compiler is important. It determines how, where and
how efficiently generated code can run, what tools are available, and how easy it
is to gain access to foreign libraries and interfaces.

Several possibilities for the target language were considered.

2.6.1.1 C--

C--[12] is a C-like language designed to be targeted by compilers. It aims to be
a portable assembly language that

should serve as the interface between high-level compilers and retar-
getable, optimizing code generators.1

It is slated to become the default target for the GHC Haskell compiler at some
point. However, at present it is rather bare-bones: it does not do much optimi-
sation, and supports generating machine-code for only one architecture.

2.6.1.2 LLVM

LLVM[13] is a a compiler infrastructure that is designed around optimisation of
code. It provides a language and machine independent typed instruction set for
compilers to target. The target language is low-level, and while compiling with
LLVM would be interesting, the difficulties inherent in compiling to a low-level
instruction set would significantly complicate the compiler.

1Taken from the C-- home page at http://www.cminusminus.org/
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2.6.1.3 The JVM

The Java Virtual Machine (JVM) provides a stack-based object-oriented virtual
machine with garbage-collection.

However, the JVM lacks tail-call elimination, which is essential for a functional
language like Links. It is possible to emulate tail-call elimination, but this can
be inefficient and awkward[14].

Parametric polymorphism is also not directly supported, and shoe-horning a func-
tional language with features such as polymorphic variant types into an object-
oriented target can be clumsy[15]. These problems can (and have) been solved,
and there exist a number of functional languages targeting the JVM[16].

2.6.1.4 .NET

Like the JVM, Microsoft’s .NET’s virtual machine (known as the CLR) is stack-
based. It also is the target of several functional programming languages[17]. It is
less explicitly object-oriented than the JVM and supports tail-call optimisation[18].

There exists an extended assembly language for the CLR called ILX[19]. This
aims to make it easier to target functional programming languages at the CLR,
and provides features like first-class functions, parametric polymorphism and
variants (although not polymorphic variants).

2.6.1.5 OCaml

OCaml is a functional language featuring a high-performance optimising native
compiler that can target many architectures.

OCaml is also the basis for F#, a functional language for Microsoft’s .NET
platform. Both languages share a common core, which makes it easy to produce
code that compiles with either (for example, the F# compiler itself is written
so as to compile as either OCaml or F#). Targetting both F# and OCaml
gives flexibility and portability, allowing Links code to run natively on many
architectures (via OCaml), or to run on a well-established “enterprise” system
already in use by many organisations (via F# and .NET).

Compiling a functional language to another functional language is also signifi-
cantly simpler than targetting an imperative language. For these reasons, it was
decided the compiler would target OCaml.

The compiler produces code that will compile as F#. However, the run-time
system in a couple of places (unavoidably) uses features incompatible with F#
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(specifically functors). This should be straightforward to fix as F# has condi-
tional compilation that can compile different blocks of code depending on whether
OCaml or F# is being used.

The only esoteric feature that compilation relies on is the ability to serialise
closures (this is needed to serialise continuations). It has been checked that F#
supports this.

2.6.2 How The Compiler Fits In

The Links compiler uses the same front-end as the interpreter. The front-end
does parsing, type-checking and desugaring of Links code into an IR tree. This
IR tree is then fed into the compiler, which compiles it to a simple untyped
language which is pretty-printed into OCaml.

The compiler code is essentially independent of most of the rest of the Links
implementation, relying only on the IR format and various simple utilities.

It may have been possible to re-use other parts of the code, particularly the
Javascript compiler, but a decision was taken early on that the compiler code
should be as independent as practicable. Links was (and still is) evolving rapidly,
and making the compiler code independent insulated its development from most
of the rest of the ongoing development. This meant less time and frustration was
spent integrating changes required by the compiler with the rest of the code and
vice-versa.
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3. The Pretty Printer

To aid understanding of the intermediate representation (IR), as well as to facil-
itate debugging, a pretty-printer was developed for IR trees.

Developing the pretty-printer required a good understanding of the IR and its
scoping rules, so it was well worthwhile as a preparation for writing the compiler.

3.0.3 Implementation

The pretty-printer simply traverses the IR and uses a set of pretty-printing
combinators[20] to build a textual representation of the tree.

At present it does not print typing information, as there was no pressing need for
it to do so. There is already code for pretty-printing types inside Links, and this
could be re-used or adapted for the pretty-printer if it was required in the future.

3.0.4 An Example

A simple Links function is given in Figure 3.1. The output the pretty-printer
produces on its IR tree is shown in Figure 3.2

Variables are printed as “name/ID” pairs. The name is the human-readable vari-
able name (if one exists—if not one is generated from the ID by prepending an
underscore) paired with the internal integer representation of the variable.

Infix operators are printed in prefix style. This is to emphasise their syntactic
structure within the IR and because in the IR function application and operator
application are treated the same way.

Bindings are grouped before the computation they are used in, as they are in the
IR.

fun factorial(n) {
if (n <= 1)

1
else

n * factorial(n - 1)
}
factorial(10)

Figure 3.1: A simple Links function to calculate the factorial of a number n

13
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let
rec

fun factorial/1467 __1466/1466 =
let

val n/1465 = __1466/1466
in

if
(<=/16 n/1465 1)

then
1

else
let

val __1468/1468 = factorial/1467 (-/2 n/1465 1)
in

(*/3 n/1465 __1468/1468)
end

in
factorial/1467 10

Figure 3.2: The result of pretty-printing the IR representation of the code in 3.1



4. The Compiler

4.1 Overview

The compiler is invoked via a function that is called from main Links file. This
takes an IR tree and returns a formatted string containing the compiled OCaml
code.

The compiler walks the IR and translates it into a much simpler untyped target
language tree. It can produce code in either CPS or direct-style. Boxing of values
is performed during translation.

OCaml code is then easily generated by walking and pretty-printing the target
language tree. This code is returned as a string.

4.2 The IR

The Links IR is in ANF. To help illustrate ideas, a simplified version, detailed in
Figure 4.1, will be used in this report:

The important constructs are computations M , tail computations P , bindings B
and values V . Branches are not tail-computations, but are labeled as such in the
compiler IR. This is for convenience as it simplifies the front-end’s transformation
of Links code into ANF.

A computation consists of a list of bindings along with a tail computation P .
Each binding is in scope for the bindings that follow it, and also for P . A value
bind binds a variable x to a tail computation. A function bind binds a list of
mutually recursive functions. Each function in the list is in scope for every other.
A return simply returns a value. A branch first tests its condition value V . If this
is true, it executes the true branch M1, otherwise it executes the false branch,
M2. A call/cc calls its value V , which should be a function, passing in the current
continuation. A program is a closed computation (one that does not have any
free variables).

Variable names in the IR are unique—that is, any variable name is bound in at
most a single place.

The structure of this simple language follows closely the structure of the actual
IR used in the compiler, but for ease of explanation omits many constructs.

15
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M ::= let ~B in P (computation)

B ::= val x = P (value bind)
| ~F (function bind)

P ::= return V (return)
| V (~V ) (call)
| if V then M1 else M2 (branch)
| call/cc V (call/cc)

F ::= fun x(~x) = M

V ::= x | c

x ::= variable
c ::= true | false| integer

Figure 4.1: The simple IR used throughout the report to illustrate concepts.

For instance, the actual IR supports several more value types, like polymorphic
variants, lists, records and XML nodes, and allows control structures like case.

In Links, the IR is typed, but the compiler ignores types as they are not required
during translation.

4.3 Pure Application

A feature of the compiler IR is “pure application”. This is an optimisation that
allows applications of certain pure functions to act like ANF values. For instance,
if foo and bar are marked as pure, the following, which is normally illegal in ANF,
is allowed

foo(bar(a))

The proper ANF version of this is

let tmp = bar(a) in

foo(tmp)

Pure application, while useful for compiling to Javascript, makes life more awk-
ward because the assumption that all function arguments are simple disappears.
Therefore a transformation was written on the compiler IR to remove pure ap-
plications and turn them into proper ANF applications. Links has a generic IR
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M ::= let x = M1 in M2 (value bind)
| letrec ~F in M (function bind)
| if M1 then M2 else M3 (branch)
| M( ~M) (call)
| λ~x.M
| x | c

F ::= x(~x) = M

x ::= variable
c ::= true | false | integer

Figure 4.2: The target language that will be used throughout the report.

transformation framework that makes walking the IR tree while keeping track of
types easy. This was used to write the transformation.

4.4 The Target Language

The target language is essentially a simple, untyped syntax tree for a small subset
of OCaml. A simplified version is represented below. The actual target language
is not significantly more complicated. In addition it has constructs for case ex-
pressions, lists, pairs, triples, and for raising exceptions.

A value bind binds a variable x to a computation M . x is then in scope for M2.
A function bind binds a mutually recursive list of functions, all in each others’
scope, and in the scope of M. A branch tests its condition M1, and if it is true
executes M2, and otherwise executes M3.

This language is not syntactically restricted to ANF. This is convenient, as it
allows both CPS and ANF to be easily represented, and also allows us to “cheat”
a little when compiling... for instance, it is often useful to treat applications of
boxing and unboxing functions as values, which is not normally allowed in ANF.

The compiler’s target language does not directly have constructs for all Links
values (for instance, records, XML nodes and variant types). These values must
be simplified and encoded during translation.
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type value =
| Bool of bool
| Int of int
| Function of (value -> value)

Figure 4.3: A value type suitable for boxing our simple target language.

4.5 The Value Datatype

The Links and OCaml type-systems are incompatible, so in order to avoid dif-
ficulties, all values are boxed into a value datatype. A minimal version suitable
for the target language given above is shown in Figure 4.3. In the compiler, this
value type contains an entry for every possible Links value. Boxing is described
below. Boxing essentially allows the compiler to pretend that OCaml is untyped.

4.6 Transformations

The compiler supports compiling both to direct-style and CPS. This is achieved
by two separate classes that derive from a base class containing common code.
These classes, called respectively direct and cps are encapsulated along with their
base class in a module called Translator.

The call/cc operator is only supported when compiling to CPS. This means that
features that rely on having access to the current continuation, like Formlets, will
not be available when compiling to direct-style.

Direct-style compilation is still useful, however, as it is often easier to follow
direct-style code, which can aid debugging. Also, as discussed in Further Work,
it would be possible to add call/cc to direct-style compilation some time in the
future.

4.6.1 The Direct-style transformation

Figure 4.4 outlines the direct-style transformation of the IR to the target lan-
guage. It consists of 3 functions. [[·]]M takes an IR computation or tail compu-
tation and produces a target term. [[·]]B takes an IR binding term and a target
term and produces a target term. [[·]]V takes an IR value and returns a target
term.

The translation is performed by applying [[·]]M to an IR program, and yields an
equivalent program in the target language.
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[[val x = P ]]B R = let x = [[P ]]M in R

[[[fun x1( ~x1) = M1, . . . , fun xn( ~xn) = Mn]]]B R =

letrec [x1( ~x1) = [[M1]]M , . . . , xn( ~x′
n) = [[Mn]]M ] in R

[[B1 :: ~B]]B R = [[B1]]B ([[ ~B]]B R)

[[[]]]B R = R

[[let ~B in P ]]M = [[ ~B]]B [[P ]]M

[[if V then M1 else M2]]M = if [[V ]]V then [[M1]]M else [[M2]]M

[[return V ]]M = [[V ]]M

[[V ([V1, . . . , Vn])]]M = [[V ]]V ([[[V1]]V , . . . , [[Vn]]V ])

[[call/cc V ]]M = error

[[V ]]V = V

Figure 4.4: The direct-style transformation consisting of functions that take IR
terms and produce direct-style target code.
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The list of bindings that accompanies a computation in the IR is split up, with
each binding being “pushed down” to be a continuation of the previous one, with
the tail-computation being pushed down furthest:

let
val x = 1
val y = 2
val z = 3

in
P

becomes

let x = 1 in
let y = 2 in

let z = 3 in
P

This pushing-down is achieved via the argument R (standing for rest) to the
bindings transformation.

The rest of the translation is straightforward. In the actual compiler, the trans-
lation of values is more complicated because some Links primitive types do not
have direct representations in the target language and must be transformed into
their target language representation. This is described in 4.9.

call/cc is not supported, and if it is encountered by the compiler then code to
raise an OCaml exception is emitted. This means that compiled code raises a
run-time rather than a compile-time error. As parts of the Links prelude rely
on call/cc , emitting a compile-time error would necessitate two versions of the
prelude, one for direct-style and one for CPS.

The target language retains important properties of the source language: Vari-
ables are still unique and single-assignment, and the terms are still in ANF, albeit
this is now by convention rather than enforced by syntactic restriction.

4.6.2 The CPS-transformation

The CPS transformation is given in 4.5. It is not much more complicated than
the direct-style translation as transforming ANF into CPS is fairly simple.

There are three functions, one for computations, one for bindings and one for
values. Transformation of values is exactly the same as with direct-style, so in
the compiler the value transformation code is shared via subclassing between the
direct-style and CPS transformers.
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[[val x = P ]]B R = [[P ]]M λx.R

[[[fun x1( ~x1) = M1, . . . , fun xn( ~xn) = Mn]]]B R =

letrec [x1(κ :: ~x1) = [[M1]]M κ, . . . , xn(κ :: ~xn) = [[Mn]]M κ] in R

[[B1 :: ~B]]B R = [[B1]]B ([[ ~B]]B R)

[[[]]]B R = R

[[let ~B in P ]]M K = [[ ~B]]B ([[P ]]M K)

[[if V then M1 else M2]]M K = if [[V ]]V then [[M1]]M K else [[M2]]M K

[[return V ]]M K = K([[V ]]V )

[[V ([V1, . . . , Vn])]]M K = [[V ]]V ([K, [[V1]]V , . . . , [[Vn]]V ])

[[call/cc V ]]M K = [[V ]]V ((λκ, x.K(x)), K)

[[V ]]V = V

Figure 4.5: The CPS transformation, consisting of three functions that take IR
terms and transform them into target language terms in CPS form.
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The transformation on computations takes a continuation argument which is
a function of one argument, K. Applications are translated to pass the current
continuation as an extra argument. Return invokes the current continuation with
its value. Conditionals simply pass on the continuation to their two computation
branches. Let-bindings are transformed into a continuation which is invoked with
the value of the let’s tail-computation. Functions are transformed to take an extra
continuation argument, κ, and κ then becomes the continuation of the function
body. Call/cc becomes an application of its value to the current continuation
(wrapped in a λ that accepts and discards its continuation argument).

4.7 Avoiding Name Clashes

In the Links IR, each variable is represented as an integer. These integers are
associated with their Links names at binding time. As it walks through the IR,
the compiler keeps an environment mapping variable integers to Links names.
This allows the Links names to be looked up and included as part of the variable
name in the target language, which improves the readability and debugability of
the resultant code.

However, it is important that the generated variable names do not clash with
OCaml built-ins and that they contain only characters allowed as part of OCaml
identifiers. Names are therefore generated as follows:

• An underscore is prefixed to the Links name. As no OCaml built-ins start
with an underscore, this ensures that identifiers will not clash with OCaml
names.

• The variable’s integer representation is post-fixed to the variable name.
This ensures the variable name remains unique.

• The result is then passed through a wordify function that replaces symbols
invalid in OCaml identifiers with words.

For example, the Links variable ∗ with integer representation 3 would be trans-
formed into _star_3.

4.8 Boxing

The type-systems for Links and OCaml are incompatible in various ways. In
order to escape from OCaml’s type-system, all Links values are boxed into the
OCaml value datatype.
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Boxing is implemented by various boxing and unboxing functions that are part of
the run-time system. Boxing functions take the OCaml representation of a Links
type and return a boxed value of type value. Contrariwise, unboxing functions
take a boxed value of type value and return the original unboxed value.

There are boxing and corresponding unboxing functions for every primitive Links
type. Calls to these boxing and unboxing functions have to be inserted during
translation. To achieve this, the Translator module containing the cps and direct
classes is parametrised with a module of type Boxer. During translation, calls
are made to functions in this Boxer module.

Each construct in the IR that may require boxing or unboxing has a corresponding
function in Boxer to perform the boxing transformation. These functions are of
type code → code, taking the fragment of the target language representing the
construct and modifying it to be correctly boxed.

There are two modules of type Boxer. One, FakeBoxer, adds no boxing or un-
boxing calls at all. This is handy for debugging, as when trying to track down a
problem it is often clearer to look at the code without boxing. The other module,
CamlBoxer, does the necessary boxing for OCaml.

Values are always kept boxed and only unboxed when required. This is naive, as
no analysis is done to determine whether boxing of values is actually necessary.
Chapter 5 presents an algorithm that performs more optimised boxing.

Boxing for OCaml is mostly straight-forward. For instance, literals are boxed
immediately

true

becoming

box_bool(true)

and conditionals require their condition to be unboxed before testing

if M1 then M2 else M3

becomes

if unbox_bool(M1) then M2 else M3

4.8.1 Boxing Functions

Boxing functions and function application is more complicated. Functions take
boxed arguments and return a boxed result. This gives them types of the form
(value ∗ . . . ∗ value)→ value
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To support higher-order functions, it must be possible to box functions with an
arbitrary number of arguments. This is achieved by transforming functions so
they have the type value→ value. Functions of this type can then be boxed into
the value datatype.

Single-argument functions already have the type value→ value. Multiple-argument
functions are transformed to this type by currying, so that applying a function to
multiple arguments becomes a series of single-argument applications, each result-
ing in a value type that is either a boxed function accepting the next argument
or a boxed result if the function has been fully applied.

For example, the function:

f(x1, x2, x3) = M

becomes

f(x1) = box_func (λx2.box_func (λx3.M))

where box_func boxes a function of type value → value. This results in f having
type value → value.

When calling functions, the opposite process occurs: The curried functions are
unboxed and applied to the arguments:

(unbox_func ((unbox_func (f x)) y)) z

When boxing functions in a letrec , it is important to ensure that it is the boxed
version of functions that is always in scope. To achieve this, each function in a
letrec is boxed inside all mutually recursive function bodies, as well as in the
code after. An example is in Figure 4.6.

4.8.2 Alternative Ways to Box Functions

There are other possible ways to box functions. One alternative to is to represent
arguments as OCaml arrays. This would give all functions the type value array→
value, which could be easily boxed. OCaml supports pattern-matching on arrays,
which would make the syntax for arguments much clearer than above:

let x a b = a + b

would become

let x [|a; b|] = a + b

and calling it would be just as easy:
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letrec [x(a, b) = M1, y(c, d) = M2] in M3

letrec [

x(a) =

let x = box_func(x) in

let y = box_func(y) in

M1,

y(b) =

let x = box_func(x) in

let y = box_func(y) in

M2

] in

let x = box_func(x) in

let y = box_func(y) in

M3

Figure 4.6: An example of boxing mutually recursive functions: both functions
are boxed inside each others’ bodies, and also in the code after.
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x [|4; 2|]

This could also potentially be more efficient, as there is less (explicit) unboxing
during function calls. However it was decided that the currying approach of 4.8.1
was more natural.

4.9 Value Representations

Links includes several primitive value types that must be represented in a work-
able way in OCaml. This section gives details of these representations and why
they were chosen.

4.9.1 Variants

Links supports polymorphic variants, which means that variant tags do not be-
long to a specific type. Instead, a type is inferred for each tag usage and the Links
type-system ensures that they are used in a consistent way. Variants therefore
should be represented in a way that doesn’t associate them with a particular
type. In the compiler, variants are represented by pairs of strings and values. For
instance, the Links variant

Pounds(42)

would be represented as

("Pounds", box_int(42))

in OCaml. This allows for easy translation of switch pattern matching:

switch (money) {
case Pounds(i) -> i
case Dollars(i) -> i

}

becomes

match money with
| ("Pounds", i) -> i
| ("Dollars", i) -> i

OCaml does support polymorphic variants, but they are strictly less expressive
than those in Links, making them an unsuitable representation. Furthermore,
it must be possible to easily box variant values, meaning they should have a
consistent representation of a single type.
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4.9.2 Records and Tuples

Links supports record types, which are a collection of fields indexed by name.
For example

(country="Scotland", capital="Edinburgh")

Records and tuples are the same thing in Links. Tuples are just records indexed
by an integer sequence beginning at 0.

Records are represented in the compiler using StringMap, an OCaml data struc-
ture that maps strings to value types. Records are constructed as a series of
nested StringMap.add operations

(StringMap.add
"country" (box_string "Scotland")
(StringMap.add "capital" (box_string "Edinburgh")

StringMap.empty))

they are indexed by looking up the a field name in the StringMap.

4.9.3 XML

Links supports XML nodes as a native data type. They are represented as a
list of type xmlitem. This list is built at run-time by calling a build_xmlitem
function. An xmlitem value is either a string, which represents a text node, or a
tuple consisting of a node name, a list of attributes and a list of xmlitem children:

type xml = value list
and xmlitem =

| Text of string
| Node of string * (string * string) list * xml

4.10 From The Target Language To OCaml

As the compiler’s target language essentially represents the syntax tree for a
subset of OCaml, converting it to OCaml is easy. The tree is walked, and OCaml
is produced using the same pretty-printing combinators that were used for the
pretty-printer.

The resulting string is a closed OCaml expression. This is wrapped with a func-
tion called entry, and an OCaml main function is added that will pass this entry
function to the run method of the run-time system when the code is executed.
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The resulting code is then printed. It can be compiled with OCaml by linking
against a small run-time system and library of primitives.

4.11 The Primitives Library

Compiled executables are linked with a small library of primitive functions writ-
ten in OCaml.

This does not include all the functionality of the interpreter primitive library.
Notably missing are support for regular expressions and for concurrency.

4.11.1 Generating Wrappers

Translation of function application makes no distinction between calling primitive
functions and non-primitive functions. This means that primitives must behave
exactly like non-primitives. They must therefore be boxed themselves, take boxed
arguments and return boxed results. For instance, the primitive _int_add

let _int_add x y = x + y

would become

let _int_add = (box_func (
fun x -> (box_func (

fun y -> box_int ((unbox_int x) + (unbox_int y))))))

This is tedious for a human to write. Therefore, library functions are written in
a natural style and boxed stubs are generated for them at compile-time. These
stubs are created using a table giving details of each library function. An example
table entry is

"+", "_int_add", (["unbox_int"; "unbox_int"], "box_int"), false

The fields are, respectively, the Links name for the primitive, the OCaml func-
tion name, the boxing information (which consists of a list of unboxing functions,
one for each argument, and a single boxing function for the return value), and a
boolean indicating whether the function needs to be passed the current continu-
ation.

Generating function stubs for the library at compile-time allows the same OCaml
code to be used for direct-style and CPS. Library functions are always written in
direct-style, and when a stub is generated during CPS compilation, it accepts an
extra continuation and applies it to the return value of the library function.
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let _int_add x y = x + y

let _plus_1 = (box_func
(fun k -> (box_func

(fun arg_0 -> (box_func
(fun arg_1 ->

((unbox_func k)
(box_int (u_add (unbox_int arg_0) (unbox_int arg_1)))))))

Figure 4.7: The natural, direct-style definition of a primitive function followed
by the boxed CPS stub generated from its primitive table entry.

Some functions (for instance, exit) require the current continuation to be passed
in. This is indicated in the table entry for the primitive, and in this case the
CPS stub generated passes the continuation as an extra argument rather than
applying it. In direct-style compilation, the stub will raise an exception if called.

It is important that the generated stubs receive the name that they will be referred
to by later. The stub name is therefore generated in the same way as other
variables, as described in 4.7. For instance, the stub for the Links + primitive
would be given the name _plus_1. A complete CPS stub for + is shown in Figure
4.7.

4.12 The Run-time System

The compiler’s run-time system contains the functions for boxing and unboxing
values, some utility functions used by the compiler, the value datatype and the
code required to run the executable.

4.12.1 CGI and Command-line interface

When a compiled executable is run, its main function is passed to the run-time’s
run function. This checks whether the program is being run using CGI or on
the command-line. It does this by checking for the presence of CGI environment
variables.

If the program is being run on the command line, its main function is immediately
executed, and the result it returns is printed to standard output.

If it is being run as a CGI program, first the CGI parameters are parsed and
stored into a mutable variable so that primitives can access them (some primitive
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functions related to formlets require access to the CGI parameters). If the special
continuation parameter, _k is present, it is assumed to be a serialised continu-
ation, and is deserialised and applied. Otherwise, the program’s run function is
called.

In either case, a value of type Page is returned. This is turned into XML by
passing it to a function renderPage and then printed to standard output, which
goes to the client.

Serialisation and deserialisation of continuations is achieved in CPS using OCaml’s
Marshal module, which is capable of serialising closures.

4.12.2 Printing

The run-time system takes advantage of the tags boxing provides to implement
polymorphic printing of values.



5. Optimised Boxing

Boxing can sometimes be expensive, and also leads to ugly code. It is therefore
worthwhile to try and eliminate as much boxing and unboxing as possible. This
chapter attempts to give an intuitive overview of a new boxing algorithm that
boxes correctly, but tries to do so with as few explicit boxings/unboxings as
possible.

The algorithm operates on the target language, as this is a little simpler than
operating on the IR. In the actual compiler, where the range of built-in types is
larger, the analysis part of the optimisation would need to take place on the IR.
This is because some value types do not have direct target language analogues.

The input is assumed to be in ANF with unique variable names. This is the
case for terms generated using the direct-style transformation given in Figure
4.4. Terms also should not contain λ functions.

The algorithm consists of a boxing transformation that adds boxing to terms. To
help it do this, it takes advantage of knowledge gained by two analysis phases.

The transformation treats boxed and unboxed versions of a variable separately
rather than as two states of a single variable. This has the effect of splitting a
variable x into two: a boxed version, xb and an unboxed version, xu.

When a boxed value is required, x is replaced by xb and when an unboxed version
is required, it is replaced by xu. This has the effect of hoisting boxing and
unboxing up to where x is bound. Whether xu, xb, or both are made available is
determined by an environment Γ that, for each variable says whether it is used
boxed, unboxed, both, or whether it doesn’t matter.

Γ maps each variable to a member of a lattice L = {>,⊥,B,U} with partial order
⊥ @ U @ > and ⊥ @ B @ >. Γ x is U if x is used only unboxed, which means
only xu need be available. Similarly, it is B if it is used only boxed, which means
only xb need be available. > means that it is used both boxed and unboxed, and
therefore both xu and xb must be available. ⊥ means it is used neither boxed or
unboxed, in which case it doesn’t matter of which of xu and xb is available and
the most convenient can be picked.

At a binding let x = M1 in M2 it is useful to know whether the body M1 can
readily provide boxed or unboxed values. By readily we mean that it can provide
the value without having to explicitly box or unbox.

If x is required only boxed and M1 can readily provide a boxed value then xu

can simply be assigned straight from M1. This works similarly for boxed values.
The let binding tells M1 whether it requires a boxed or an unboxed value, and

31
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M1 is obliged to provide what it is asked for; but by knowing what M1 can easily
provide, the let can ask for things that are already available and so prevent
unnecessary boxing/unboxing.

For each variable x bound with let x = M1 in M2, the environment Π maps x to
a member of L. If Π x = U then only unboxed values are readily available from
M2. If it equals B then only boxed values are available, and if it equals > then
both boxed and unboxed values are available. ⊥ does not occur.

To calculate Γ, we need to know what it means to say a variable is used boxed
or unboxed.

A variable is used boxed if it

1. Is passed to a function that requires a boxed value as its argument.

2. May be copied to a variable that is used only boxed.

A variable is used unboxed if it

1. Is passed to a function that requires an unboxed value as its argument.

2. May be copied to a variable that is used only unboxed.

3. Appears in the conditional of an if term.

The effect of rule (2) is to propagate usages backwards across copies. For example

let x = y in M

if x is used only unboxed in M then y is marked as being used unboxed too.
That means that y will be able to readily supply an unboxed value to x. In
effect, unboxing is being hoisted so it occurs earlier.

Rule (1) necessitates that we know whether a function takes boxed or unboxed
values as arguments. The environment Ω maps every function to a tuple 〈~L, L〉
consisting of a list of L values, one per argument, and a single L value for the
return value. This tuple is known as a schema. B means boxed and U means
unboxed. No other values are allowed. By inspecting Ω, it is possible to tell
whether a variable passed as an argument to a known function is used boxed or
unboxed. Similarly, it is possible to tell what value a function can readily provide
by inspecting whether its return value is B or U . Unknown functions always
return boxed values and take boxed arguments.

Each function f is split into two versions. A worker function fu that may take
and return boxed and unboxed values and a safe wrapper function fb that takes
and returns boxed values. The wrapper function can be easily generated using the
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information in Ω. Whenever a known function is called, fu is used, and whenever
the function escapes (through a copy, for instance) fb is used.

Γ, Π and Ω are calculated by abstract interpretation in two analysis phases. The
first pass computes Γ and the arguments part of Ω. The second pass computes
Π and the return part of Ω.
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6. Evaluation

6.1 Execution Speed

The main aim of the project was to improve the execution speed of server-side
Links code. To determine whether this had been achieved, execution times were
measured on a variety of benchmarks for both interpreted and compiled Links
code.

6.1.1 Benchmark Setup

The benchmarks were conducted on a minimally loaded 2.16 GHz Intel Core 2
Duo Macbook Pro with 2 gigabytes of RAM. Each result is the average of 10 runs
with the highest and lowest times thrown away.

The Links interpreter has the ability to record time statistics for the run of a
program. This facility was used to ensure that only the time taken to interpret
the Links IR was measured, without including the time taken to read, parse, type-
check and compile the source code. These disregarded steps can take a significant
amount of time and so could adversely affect the perceived interpretation speed.
Ignoring them is also fair, as in real-world operation Links caches the generated
IR tree, so the overheads of parsing, type-checking and compilation only apply
to the first execution of a program.

Code was added to the compiler’s run-time system so that when a particular envi-
ronment variable was set for program execution (MEASURE_PERFORMANCE ),
the execution time was recorded. Execution time was measured in the same way
as for interpreted code.

The performance statistics were written to standard error. A python script was
created that automatically ran the benchmarks, parsed the run-time for each run
and then calculated the average and the standard deviation. For programs that
required CGI, this was emulated by setting appropriate environment variables.

6.1.2 Benchmark Programs

The tests were conducted using several fairly standard micro-benchmarks, along
with some Links-specific benchmarks that measure rendering and form-processing
speed.
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sumlist 12.677 0.005 0.067 0.000
tak 6.578 0.004 0.084 0.000
quicksort 15.619 0.006 0.048 0.000
fib 7.450 0.008 0.201 0.000
table render 13.150 0.010 1.700 0.001
formlet render 6.721 0.005 0.353 0.001

Table 6.1: Benchmark results for execution time of interpreted and compiled
code. Values are times in seconds.

sumlist generates a list of consecutive numbers, then sums the list. It tests
integer arithmetic and list processing.

tak calculates the takeushi function. This tests recursion and function calls.

quicksort generates a list of consecutive numbers then sorts them using the
quicksort function. The version of quicksort used is the one in the Links
prelude, which is implemented using higher-order functions for comparisons.
This tests higher-order functions, list deconstruction/construction and re-
cursion. The pivotal element is always chosen to be the left-most. Thus,
the benchmark always runs with quicksort’s worst-case performance.

fib is the usual naive recursive implementation of the fibonacci function. It tests
recursion and function calls.

table render generates a large HTML table of consecutive integers. It is sup-
posed to measure the raw speed of building up and rendering XML.

formlet render renders several formlet forms on a page. This tests formlet
rendering speed.

Parameters were chosen for the size of the benchmark problems to ensure that
the interpreter benchmarks would complete in a reasonable amount of time.

6.1.3 Results

As can be seen, compiled code significantly outperforms interpreted code, but
much less so on the rendering and form-processing benchmarks than on the
micro-benchmarks. This suggests that compiling makes a massive difference to
algorithmic code and gives a much smaller benefit when building and rendering
pages.



7. Conclusion

The goal of the project was to increase the performance of server-side Links
code by implementing a compiler. A compiler has successfully been created, and
benchmarks show that compiling gives a clear and substantial performance gain.

A new boxing optimisation has also been developed, but unfortunately due to
lack of time has neither been implemented in the compiler nor described in great
detail in this report.

7.1 Further Work

There is lots of scope for further work. Support for Javascript, concurrency and
database querying would go a long way to making the compiler usable in the real
world.

It would be interesting to add continuations to the direct-style compiler and
compare performance against CPS. A method for doing this is described in[8]
and its implementation for Javascript described in[21]

F# support would give Links the ability to run on .NET. As the compiler al-
ready produces F#-compatible code, this would just require some conditional
compilation in parts of the run-time system, which would not be difficult.

The boxing optimisation presented in the report should be implemented and
benchmarked, and the compiler should be benchmarked against the interpreter
on some more substantial programs. Currently this is hampered by the lack of
SQL and Javascript support in the compiler.
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