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Abstract
Links is a functional programming language which solves the impedance mismatch
problem arising in classic web development technologies by offering a single source
language which compiles to JavaScript and SQL. However, it is important to explore
whether the approaches used in Links are capable of providing as many features as those
of classic languages. Specifically, this thesis demonstrates Links’ ability to provide
live peer-to-peer video conferencing functionality through the use of the WebRTC API.
Additionally, this thesis presents an application which offers a selection of interfaces to
users for interacting with this underlying video conferencing system. One such interface
aims to provide a simple user experience with the minimum information supplied to the
user to allow them to interact with other users. The other interface aims to offer a user
experience which more closely resembles real-life interactions by introducing a spatial
environment in which users move more naturally from conversation to conversation. In
order to develop these interfaces with the same underlying system state and allow users
on both interfaces to interact smoothly, a model-driven approach was used. This proved
particularly effective in conjunction with the Model-View-Update pattern supplied by
Links. After outlining the design and implementation of the system, we go on to discuss
its achievements and offer several possible future directions for the project.
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Chapter 1

Introduction

1.1 Motivations

Since its inception, the internet has become integral to the way we live our lives as it
allows us to find information instantly, share our interests with peers, buy groceries, and
much more. In order to enable the internet to function as smoothly as it does, a variety
of web technologies are utilised.

Classic web development involves learning multiple programming languages such as
JavaScript, PHP, and SQL to ensure the different layers of a web application function
properly. Unfortunately, using multiple languages causes friction when interfacing
between their various distinct archetypes [24].

It is this impedance mismatch problem that prompted the creation of the Links pro-
gramming language [2]. Links provides a single functional source language which
compiles to JavaScript and SQL, allowing it to offer the functionality of all the classic
web development languages. To prove the effectiveness of the approaches used in Links,
it needs to be able to provide as much functionality as the classic web development
languages. One such capability integral to modern society is live video conferencing as
you find on Zoom [28] and Teams [18].

These traditional conferencing systems are static, meaning users do not move around to
interact with one another and if they would like to enter a separate conversation, they
would have to create or join a new breakout room through a menu of options. This
interface is in contrast with real-life interactions in which we have the freedom to move
around in a social space.

With the aim of offering a more natural environment for virtual conversations, a variety
of alternative systems have arisen. One such application called Gather.town [12]
supplies a gamified environment in which participants move characters around and when
they are within close proximity of another character, they begin communicating. Thus,
users navigate between conversations in a manner more akin to real-life interactions.

FluidMeet [11] is another such system which instead offers users a choice of how
much spatial information they receive from the system. This is important as having
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Chapter 1. Introduction 2

an elaborate interface could prove overly complex to those with visual impairments or
other disabilities who are found to prefer a clear and simple design [8].

1.2 Approach

Consequently, this thesis proposes the creation of a Links-based video conferencing
system (VCS) which supports the choice of either a gamified or traditional experience,
allowing participants on both systems to interact with one another.

From the perspective of clients accessing the application, we provide the option of a
gamified spatial interface or a simple static interface for interacting with the VCS. In our
spatial interface, the user sees their selected avatar located on a visual map of available
rooms through which the user can navigate between different conversations using their
keyboard. In our static interface, the user navigates between conversations by simply
selecting their desired room from a list, without any knowledge of the underlying map.

To enable live communication between clients, the system successfully makes use of the
WebRTC framework which provides a JavaScript API for creating and maintaining peer-
to-peer connections [16]. In order for Links to connect to this API, it must make use of
a Foreign Function Interface (FFI) which allows it to call JavaScript functions directly
from Links code [6]. These JavaScript functions take care of media capturing, setting
up RTC connections, and generating offer or answer messages during call initialisation.
These offers are then sent via the Links code to the server’s mailbox which forwards
them on to the connecting client. Although connecting to the WebRTC API through
the FFI proved successful, we also describe how this highlighted a limitation in Links’
ability to handle the asynchronicity which sometimes arises in JavaScript functions.

During the development of the frontend interfaces, a model-driven approach was
used such that each view exposed to the client is abstracted from the underlying
implementation of the system’s state [15]. Links makes this particularly easy to achieve
by providing functionality for a Model-View-Update architecture [7]. This approach
consists of a model to maintain the state of the application, a view function to render
the model, and an update function which handles messages produced by these models
and produces new models. With this architecture, we show that offering two interface
options can be achieved with the same underlying model state by simply changing the
view function and adding an additional update message to handle movement.

1.3 Thesis Outline

This thesis first goes through the background research which motivates and underpins
the system in Chapter 2. Then, Chapter 3 describes and justifies the design choices made
during the development of the system and is followed by Chapter 4 which outlines the
technical implementation used to realise this design. Thereafter, Chapter 5 evaluates and
discusses the various achievements and limitations of both the system implementation
and interfaces. Finally, Chapter 6 concludes the paper, summarising its successes and
suggesting directions for future work.



Chapter 2

Background

2.1 Web Technologies

The internet plays many important roles in modern life, allowing us to find information
instantly, share our interests with peers, buy groceries, and much more. In order to
enable the internet to function as smoothly as it does, a variety of web technologies are
utilised.

2.1.1 Classic Approaches

Commonly, the client-side consists of markup languages such as HTML and XML to
specify the basic structure and content of the web-page, a styling language such as
CSS, and a language such a JavaScript to provide dynamic functionality [2]. On the
server-side, languages such as Python, Java and PHP can be used for performing more
intensive computations and functionality. Finally, languages such as SQL and XQuery
allow connections to databases which store the huge quantities of data which may be
requested on a website. These different layers, or tiers, allow modulation of websites
and allows for languages which are tailored to specific purposes.

Unfortunately, having this variety of programming languages to choose from at each
level creates friction known as the impedance mismatch problem. Impedance mismatch
problems are issues which arise as a result of combining technologies which use
different archetypes [14].

2.1.2 Links

For this reason, the Links programming language has been created, offering an alter-
native approach to web technologies which replaces this three-tiered web model with
a single language. Links is a strict, statically-typed, functional language which aims
to replace the three-tiered web system with a single-source language [2]. It does so by
providing a translator from the Links code to JavaScript and SQL, with the functional
aspect of the language providing additional benefits such as database query optimisation,
continuations for web interaction, and concurrency with message passing.

3



Chapter 2. Background 4

The pattern classically used when programming in Links to achieve concurrency is
similar to that of the Actor Model [5]. In this model, an Actor is responsible for
managing its own state and performing computations [9, 10]. In this way, there is
no global state shared across actors or processes which allows for concurrency since
computations are safe from attempting to modify the same memory location. Messages
are sent between different actors and when an actor receives a message, it can perform
any of 3 concurrent actions: send messages to other actors, create additional actors, or
prepare for how subsequent messages will be handled [9]. However, the imperative
nature of the Actor model is not well-suited to the implementation of graphical user
interfaces (GUI) which makes it more challenging to create webpages in Links.

For this reason, an adaptation of the Model-View-Update (MVU) architecture introduced
by Elm has been added to Links [7]. Elm, like Links, is a functional language and, as
such, the architecture it presents is particularly well-suited to functional programming.
In this architecture, a model contains the state of the application, a view function
renders the model, and an update function handles messages produced by the rendered
model and produces new models. This offers a declarative approach to developing user
interfaces which is not available with a purely Actor-based model. Figure 2.1 shows the
components and interactions involved in the classic MVU architecture.

Figure 2.1: The standard Model-View-Update pattern.

Since the Links language is still in active development, it still lacks some functionality
which is provided by JavaScript. Fortunately, Links offers a Foreign Function Interface
(FFI) which allows custom JavaScript functions to be written and called from a Links
application such that any missing JavaScript functionality can still be included by the
programmer [6]. In particular, this paper will use FFI to access the WebRTC framework
to achieve real-time communication between clients.
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2.2 WebRTC

WebRTC [3] is a set of standards making use of peer-to-peer connections to enable real-
time applications such as text-based chat, audio sharing, and live video conferencing.
This framework allows peers to send and receive information directly, without first
sending the data through a server which can create delay [16]. The WebRTC API
will therefore be required to allow our video conferencing application to facilitate the
exchange of live video and audio between clients.

2.2.1 Client-Server vs P2P

In the traditional Client-Server network architecture, devices in a network act as either
a client or a server. Clients make requests for services and content which are received
and actioned by the server, a higher-performance entity which is usually connected to
a large number of clients [24]. In this way, clients are not connected directly to one
another and in order to share content must instead send content first to the server which
can in turn forward this to the destination client.

On the other hand, in the peer-to-peer (P2P) architecture, devices in the network can act
as either a client or service provider at any point. In this way, devices in a P2P network
share their combined resources in order to send content directly to one another without
passing through a central entity [24]. WebRTC chooses to make use of the P2P network
architecture due to the fact that these direct connections between clients give less delay
for real-time applications while also giving more privacy to those communicating [16].

Although WebRTC uses P2P connections for file transfers during a session, it does
make use of servers to properly manage each P2P connection. For example, when two
clients access a video conferencing website and want to communicate with one another,
a signalling server will be set up to allow initial communication between the two clients.

A diagram of the exchanges necessary to set up a WebRTC connection between two
peers is shown in Figure 2.2 and these steps are described in detail below.
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Figure 2.2: Exchanges involved in the initialisation of a WebRTC connection. Sourced
from: [19].

2.2.2 ICE

In order for two clients to communicate with one another directly, they first need to
know where within the network the other client is located, or in other words, their IP
address. However, it is likely that both clients are connected to a router which performs
Network Address Translation (NAT) [3]. This means that the local IP address of the
client is hidden from the public network and replaced with a public IP address which
is the address external hosts should use to communicate with the client. Since this
translation happens at the router, the client does not know its own public IP address and
so can’t automatically tell other clients which address to use to connect to it.

Fortunately, Session Traversal Utilities for NAT (STUN) servers give clients the ability
to ask for their own public IP address such that they can distribute this information
to clients or servers they want to be able to connect to them [23]. If, however, the
router uses symmetric NAT, which means that the NAT mappings are dependent on
both the source and the destination IP addresses, this no longer works as other servers
would still be unable to connect since their IP address is not trusted. In this situation,
Traversal Using Relays for NAT (TURN) servers are instead utilised to route messages
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to and from the clients, therefore creating a client-server connection rather than a P2P
connection [20].

Interactive Connectivity Establishment (ICE) is used to describe the framework of
collecting the different candidates which may be used to connect to the client such as
their local IP address, public IP addresses given by STUN servers, or TURN server IP
addresses [22].

2.2.3 Signalling

The ICE candidates are bundled up along with information about available media types
and formats according to the Session Description Protocol (SDP) [22]. Clients can then
exchange these SDP formatted messages as an offer to the other client and the other
client responds with an answer until an agreement on how to communicate is achieved.
This process is called Signalling and is facilitated by the Signalling server. Once the
direct connection is agreed upon, the clients can then exchange media using a P2P
connection.

2.3 Video Conferencing Systems

Technology has long been used to communicate with one another from afar, but mostly
in the form of telephone calls or text-based messaging. However, the ability to send and
receive video streams has revolutionised the way businesses, schools, and social circles
function. The ability to share video with multiple users at the same time has become
particularly relevant in the wake of the Covid-19 pandemic which saw the use of video
conferencing systems (VCS) boom as this became the closest to face-to-face meetings
we could get.

A variety of VCS are available to use, with popular systems including Zoom [28],
Microsoft Teams[18], and Cisco Webex [1] all sharing a similar interface. The interface
consists of live video feeds for a subset of participants, a larger area displaying the
current speaker or currently shared screen, a small area showing the user’s own live feed,
and an area for text-based conversation. These systems also come with an increasing
number of additional features to mimic the way we interact in real meetings such as
raising hands, white-boarding and breakout rooms.

However, even with the inclusion of breakout rooms, these systems fail to adequately
represent the spatiality of real meetings and social interactions. For example, a teacher
may walk around the edge of a classroom to get a sense of who is struggling, while
in these virtual environments they need to enter every breakout room, potentially
interrupting the conversation. This limitation of traditional VCS has motivated new
approaches to video conferencing which take into account this spatial awareness and
enable more natural virtual interactions.
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2.3.1 Gather.town

One such VCS offering proximity-based interactions is Gather.town [12], an online
platform which allows companies or individuals to create a gamified virtual meeting
space in which customised avatars can move around and interact with other avatars.
An example of a group call in a Gather.town space is shown in Figure 2.3 [25]. When
two avatars are within close proximity they will be connected and begin sharing video,
whereas when they are far apart the connection stops and they are unable to see or
hear one another. In addition to this, spaces can be set up for broadcasting to a large
room of people as would be possible during a presentation and tables are available in
which everyone can communicate with one another similarly to the traditional Zoom
and Teams approaches.

Figure 2.3: A group call between participants in Gather.town. Sourced from: [25].

Additionally, Gather.town is increasingly incorporating many of the features offered by
traditional VCS such as white-boarding, screen-sharing and file-sharing. This ensures
that users do not miss out on any functionality by switching to Gather.town. Gather.town
also provides features not offered by static VCS as it has the unique ability to provide
interactive games which users can play. This allows for a much more natural experience
in environments such as classrooms or icebreaker sessions. Games offered include
Chess, Codenames, Tetris, and more [13].

Some limitations of Gather.town which have been highlighted are its limit of 25 par-
ticipants in the free version, and the performance of the software when multiple users
are connected on a poor internet connection [27]. It has also been suggested that this
visual interface could be inaccessible for those who find too much visual stimulus
overwhelming or those with visual impairments who may struggle to interact easily
with the virtual environment.

Overall, Gather.town provides a much more interactive experience for users and has
been shown to reduce fatigue associated with virtual meetings. In addition, a study
by [17] determined that both educators and students preferred using Gather.Town in
comparison with using other static VCS such as Zoom and Teams. However, due
to the potential accessibility issues mentioned previously, there is a need for a video
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conferencing system which provides the benefits of Gather.Town’s spatial and gamified
interactions while maintaining an appropriate level of accessibility for those with visual
impairments.

2.3.2 FluidMeet

Another alternative approach to live video conferencing is proposed by FluidMeet
[11]. In this system, the authors have focused on creating flexible boundaries between
conversations (unlike the rigid break-out room boundaries offered by alternatives such
as Teams). In doing so, they aim to offer more natural transitions between conversations
and provide a more visual representation of different conversations.

FluidMeet achieves more natural transitions by offering the option for breakout rooms
to be fully or partially open to others [11]. When fully open, users who are not in the
group are able to hear and see what is going on in that group before joining. When
partially open, non-group members instead have access to keywords being used in the
conversation in the form of a word cloud and they can view audio visualisations in order
to gain a sense of the atmosphere of a group. Figure 2.4 shows the Lound and Breakout
Room interfaces provided by FluidMeet [11].

Figure 2.4: The FluidMeet user interface with relevant sections in the Lounge and
Breakout Room labelled. Sourced from: [11].

Having access to all this information could be overwhelming for users, but FluidMeet
offers the ability to choose which of these features are displayed, reducing the visual
overload which may occur. This is an important feature to note as allowing users to
customise how much information they receive enhances the accessibility of FluidMeet
to those with visual impairments or those who just prefer a simpler interface.

2.3.3 Accessibility through Multiple Interfaces

A study by Gappa and Nordbrock (2004) explored ease of use in internet portals (search
engines) which included individuals with hearing impairments, visual impairments,
learning difficulties, and the elderly [8]. Their findings showed that all participants
valued a clear and simple design. This shows that adding many layers of complexity
which may be preferable for some, is not fit for purpose in all situations.
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In the context of video conferencing, it is extremely important that disabled students,
employees, and teachers have the same access to these systems and can communicate
effectively with peers and colleagues. Therefore, if companies and schools want to use
these interactive and spatial VCS, there need to be features included to allow disabled
or elderly individuals to participate equally.

The ideal system is one which caters to both the needs of those who prefer simpler in-
terfaces and those who prefer a more interactive experience. Therefore, this dissertation
explores offering a choice between a simplified interface offered by static VCS and a
gamified experience as offered by Gather.town. However, this produces a challenge in
terms of allowing those using one interface to interact with those using the alternative
interface.

2.4 Model-Driven Architecture

The Object Management Group (OMG) presents a Model-Driven Architecture (MDA)
as an approach which allows us to abstract this problem of having multiple views from
the underlying technical details [26]. MDA uses an incremental approach to the system
design process in which models are kept at the forefront of thinking. These models
represent different levels of abstraction of the underlying system and thus make the
overall system easier to maintain and adapt over time. Once these models have been
designed from the highest to the lowest level, and the interactions between them have
been defined, they can then be converted to code.

Thus, MDA is beneficial to the development of our system in which the two visual
interfaces offered to the user can be seen as two different models representing a high-
level abstraction of the same underlying system model.



Chapter 3

Design

3.1 System Overview

Links aims to provide a frontend language which provides programmers with the
tools to create any application which can be created using traditional web-development
technologies. In order to further test that this is possible, we outline the design of a video
conferencing web application written in Links. This application not only facilitates
live video and audio communication between users but also takes advantage of the
Model-View-Update architecture provided by Links to offer multiple interface options
to the user.

A diagram of the components and their relationships is shown in Figure 3.1. The
application consists of a Server which maintains the overall state of the application.
When a user enters the web address at which the application is hosted, a Client process
is generated that hosts a variety of sub-components: a mailbox which allows message
exchanges with the server; a JavaScript-based Foreign Function Interface (FFI) which
handles WebRTC interactions and media capture; a model to maintain the client state;
an update function which updates the model in response to actions; and a view function
which uses the model to generate HTML to be displayed to the user. The clients are
initially only able to exchange messages with the server but once an RTC connection is
made between two clients, they are able to exchange messages directly.

As described in Subsection 2.3.1, allowing more natural, spatial interactions between
users in a video conferencing system can be beneficial for enhancing engagement with
online meetings and reducing fatigue. However, it is also noted in Subsection 2.3.3
that it is important to offer a more traditional, simplified interface for those who may
be overwhelmed by too much visual information at once. Further, if both of these
interfaces are to be offered, it is vital that the individuals utilising different interfaces
are not segregated from one another. Therefore, our application will make use of Links’
built-in MVU architecture to allow different view functions of the same underlying
model state such that users with each interface can interact with one another. From the
perspective of the user, when they access the application they will first be prompted to
choose their preferred video conferencing style, static or spatial, and this choice will
influence how the underlying model state is displayed to the user by the View function.

11
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Figure 3.1: System diagram of VCS components and interactions.

Full descriptions of each component of the system are given in the following sections.

3.2 User Interface

This project offers a choice between interface designs to improve accessibility. Specif-
ically, it provides 3 views depending on which page the user is on: the landing page
before entering the VCS, the spatial map-based view of the VCS, and the static view of
the VCS.

3.2.1 Landing Page

The landing page of the application is shown in Figure 3.2 and is the same for every
client when they enter the application. It prompts the user to enter information to be
displayed once they enter the room such as their name, and their character icon. Once
the user is happy with the information they have entered, they will select which view
they would like to be displayed to them: spatial or static.



Chapter 3. Design 13

Figure 3.2: The landing page of the application.

3.2.2 Spatial View

The spatial view of the application is designed to give the user a gamified experience
of interacting with other users which more closely resembles the real-life experience
than classic VCS systems such as Zoom and Microsoft Teams. In this view, the rooms
available for entry are displayed to the user as the map displayed in Figure 3.3 with the
passages in between the labelled rooms representing the ‘Lobby’ which is the default
room upon entry.

The client and other users of the VCS are displayed as pixel art icons along with their
names and will appear in the position/room in which they are currently situated. In order
to navigate between rooms, users click the arrow keys to move their character from
grid square to grid square. When a client enters a new room, the video and audio feeds
of other clients in the new room will appear while those from the previous room will
disappear. If other clients are instead using the static view of the application (without a
map), they will still be displayed in the correct room on the map view in an unoccupied
grid square such that those using the spatial view are still aware of which room these
users are in and can join their room if desired.
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Figure 3.3: Map of available rooms displayed in the spatial view.

3.2.3 Static View

This previously described spatial view works well for engaging users and providing a
more natural environment for conversations. However, to those with visual impairments
or learning disabilities, this visual-heavy interface may prove overwhelming and dis-
courage them from engaging in social gatherings taking place in a VCS environment.
For this reason, the static view of the underlying application instead provides the user
with the minimum necessary information to allow them to join calls with other users.
This view resembles the classic VCS application such as Zoom and Microsoft Teams,
displaying the client’s own video along with those of connected clients. Instead of
seeing rooms spaced out on a map, the client will simply see the list of available rooms
to join on the left of the screen and the video streams on the right. Each possible room
selection consists of the room name as well as a list of clients currently occupying
that room and the corresponding room selection will be highlighted to demonstrate the
user’s current room.
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For example, if two users enter the application with each selecting a different interface,
their respective views of this initial underlying state are as shown in Figure 3.4. In
the spatial view, this is demonstrated by displaying the two users’ icons and names in
the orange lobby area. The user’s own video stream is displayed in the top right of
the screen with the video stream of the other user displayed below. In the static view,
the ‘Lobby’ room on the left is highlighted as their current room and the other user’s
name is listed in the ‘Lobby’ room with the video streams of each user displayed on the
right. These static-view users have no concept of which icons other users have selected,
how close rooms are to one another or any other map details because these details are
unnecessary for them to interact with others and navigate to other rooms.

(a) Spatial view of initial state with two users

(b) Static view of initial state with two users

Figure 3.4: Comparison of (a) the spatial view and (b) the static view in the same state
with two users having just joined the VCS

.
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Figure 3.5 then shows how each interface is displayed upon the static user entering the
‘Lounge’ with other users present on the system. In this state, three users are present
in the ‘Lounge’ and two users have remained in the ‘Lobby’. In the static view, the
‘Lounge’ selection is now highlighted to demonstrate that this is the user’s current room
along with displaying the names of other users present in their respective rooms. The
spatial view also captures the new room associated with the static user as their icon is in
the area representing the ‘Lounge’ room. We see here that in both interfaces the users
only see their own media and that of the other users in their respective rooms with the
static user seeing two other users and the spatial user seeing only one other user.

(a) Spatial view of a user in the ‘Lounge’ connected to two other users

(b) Static view of a user in the ‘Kitchen’ connected to two other users

Figure 3.5: Comparison of (a) the spatial view and (b) the static view, given the same
system state with the users residing in different rooms.
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3.3 Server

The server is an integral component within the application that maintains the system’s
overall state. This includes knowledge of which clients are currently accessing the
application, the overall grid of squares in which clients may be located on the spatial
map, and the location of different rooms on this map. Additionally, although the
WebRTC process will primarily depend on direct connections between clients to allow
for minimum communication latency, a server is still necessary to act as an intermediary
between these clients when they initially set up these direct Peer-to-Peer connections.

3.3.1 Grid Creation

In order to ensure easy interaction between clients accessing the Spatial view and those
accessing the Static view, a grid system is used to represent the map of rooms seen in
the Spatial view. This grid consists of entries representing a square area of the map
with each square holding a pixel location, which room it is a part of, and how many
clients are currently on that square. In this way, when a client in the Spatial view moves
to a new square in the grid, it is easy to find both the pixel location for displaying the
character in the correct position and the room they are in which will be displayed within
the Static view. Additionally, when a client in the Static view selects a new room to
enter, they can be placed in an unoccupied square in this room if such a square exists.
The server is also responsible for updating the grid when clients move in and out of
squares to ensure each square holds the correct number of occupants.

3.3.2 Broadcast Client Movements

Clients using the Spatial view need to be aware of where other clients are on the map to
allow them to communicate. Instead, those in the Static view need to know which room
each client is in. For both of these to work, the server must broadcast any changes in
the client’s position or room to every other client.

3.3.3 Trigger Client Calls

The server is aware of each room’s occupants and is therefore in charge of alerting
relevant clients of any changes they should make to their connections when a client
enters a new room. In particular, it must signal each client in the new room to begin a
call with the entering client as well as alert every client in the previous room to close
their connection with this client.

3.3.4 Forward WebRTC Messages

The server must then forward any SDP messages between the connecting clients which
will inform them of which addresses they can use to communicate directly with the other
client. Once this P2P connection is made, the clients can communicate live data directly
but the server must still handle the forwarding of any changes in the ICE candidates
available to a client to ensure they can continue communicating smoothly.
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3.4 JavaScript Foreign Functions

In order for clients to send and receive live video and audio data, our video conferencing
application first requires the ability to identify and access available media devices of the
clients. Additionally, the WebRTC framework API is integral to the live communication
of this video and audio between clients. However, these functionalities cannot currently
be accessed directly from Links.

Fortunately, as discussed in Subsection 2.1.2, we are able to make use of Links’ Foreign
Function Interface (FFI) which allows custom JavaScript functions to be called directly
from the Links code. This allows us to access JavaScript functionality which has not
yet been added to the Links library such as media capture and WebRTC API calls.

The primary functionality that our JavaScript library provides to the Links application
is to maintain and manage RTC connections between peers. In order to achieve this,
the library must make several functions available: capturing local streams from client
media devices, setting up new RTC connections and adding any local or remote video
streams, creating and receiving offer SDP messages, creating and receiving answer SDP
messages, checking for new local ICE candidates, adding new remote ICE candidates,
and closing existing RTC connections.

In addition to providing these functions, the FFI also stores relevant information for
each open connection the client has with other peers.

3.5 Client

3.5.1 Client Mailbox

When a user accesses the application webpage, they will be assigned a client process
which includes a mailbox for receiving and handling messages sent to it by the server
process. All functionality provided by the client process will be executed within the
client’s browser rather than on a separate server system and thus each client maintains
only their own state without direct access to any other client’s state. In order to share
state information with the server and other clients, the client process must exchange
messages with the server which will then determine whether the information should be
propagated to other clients.

Messages received by the client’s mailbox can trigger a variety of functionalities to be
executed. These include opening and closing RTC connections to maintain the state
of client calls, initiating calls by generating and sending SDP messages to the server
which will propagate this to the desired client, handling SDP messages propagated by
the server from other clients, and sending newly available ICE candidates to connected
clients through the server.

3.5.2 Model-View-Update

So far, the client follows Links’ standard Actor-based model. However, as described in
Subsection 2.1.2, this model’s imperative nature is not ideal for the creation of GUIs
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and so our client also makes use of the Model-View-Update architecture shown in
Figure 3.6

Figure 3.6: Overview of the Model-View-Update pattern along with its interaction with
the client mailbox.

This architecture instead allows us to utilise side-effects as exist within JavaScript such
that the client’s state can be maintained and smooth transitions between models can be
made. In our application, the client’s model holds its own information and information
about other clients received from the server. This information includes the ID, name,
grid position, pixel position, and room of each client. The model also tracks the current
view we should be displaying to this client (i.e, the landing page, the static view, or the
spatial view), as well as a list of rooms and their current members for displaying in the
static view.

The Update function accepts messages and updates the state according to the message
type and parameters. Our update function has multiple purposes: setting the unique
ID of the client as assigned by the server, setting the name and icon of the user once
selected, updating the view upon selection and alerting the server that the client has
entered this view, handling subscribed events such as pressing the arrow keys to move,
updating the rooms and positions of clients when the server signals a change, and
responding to requests for its own current position which will then be broadcast to other
clients.

However, since the Update function is only accessible by the client through user actions
and interactions with the user interface, we need a method of changing the model’s state
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when it receives messages from the server instead. In order to achieve this, we use the
Dispatch functionality offered by Links for MVU-based applications. In this manner,
the server sends messages to the client’s Actor-based mailbox as usual, and the client
itself can then dispatch this message to its model’s update function to be processed and
update the model accordingly.

The View function of the client will then generate and display an HTML representation
of the current model state. Since the application allows different choices of view, the
layout of the HTML entities depends on the current view state. This allows us to
maintain almost exactly the same underlying model and update functionality for each
system, with different high-level representations of this state observed by users.



Chapter 4

Implementation

4.1 Initial States

4.1.1 Server

Upon the initial deployment of the application, a process is spawned in the server to
maintain the system’s overall state and exchange messages with any connected clients.
This server is initialised with an empty grid of squares, an empty list of connected
clients, and a complete list of available rooms. This list of rooms includes information
about which squares they will occupy and an initially empty list of members who are
currently within them.

Before the interface is exposed to users, the Server is first instructed to begin creating
the underlying grid based on the defined rooms and their positions. The underlying map
is of size 1400 x 1400 pixels and so the underlying grid consists of 784 squares each of
size 50 x 50 pixels. To create the grid, a square is created at each column and row index
with the following type:

typename GridSquare = (
tpos: Float,
lpos: Float,
room: String,
numOccupants: Integer

)

Each square holds its placement in terms of distance from the top and left of the
webpage, its designated room, and the number of occupants on this square (initialised to
0). The room associated with the square is found by checking whether the current index
falls between the indices associated with the edges of any defined rooms. If not, the
square is said to belong in the ‘Lobby’ which is the space on the map which connects
other rooms.

Once the grid creation is completed, a route to a function which generates the main
page of the application is added to the server. Static routes to other sources such as
the style sheets, JavaScript files, and supporting media are then also added. The server

21
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must then initialise web sockets which will allow two-way communication between the
server’s mailbox and any connected clients. Finally, the server will begin serving the
pages from the added routes, allowing users to access the application.

Overall, the initialisation of the server is achieved as follows:

fun main() {
serverPid ! CreateGrid;
addRoute("/", fun(_) {mainPage()});
addStaticRoute("/images", "images", [("png", "text/plain")]);
addStaticRoute("/images", "images", [("gif", "text/plain")]);
addStaticRoute("/css", "css", [("css", "text/css")]);
addStaticRoute("/js", "js", [("js", "text/javascript")]);
serveWebsockets();
servePages()

}

4.1.2 Client

Each time a user enters the application, a new client process is spawned with a mailbox
for exchanging messages with the server. This process starts by creating a new MVU
handler with an initial model, an update function, a view function, the ID of the HTML
element in which the result of the view function will be placed, and a subscription
function which will listen for specified events such as onKeyDown events in our case.

The initial model state is set to the following:

var initialState = (
currentView="Options",
myPosition=(

id="None",
name="Nameless",
xind=0,
yind=0,
room="Lobby",
xpos=0.0,
ypos=0.0,
icon="None"

),
rooms = [

(name="Lounge", members=[]),
(name="Kitchen", members=[]),
(name="Study", members=[]),
(name="Ballroom", members=[]),
(name="Lobby", members=[])

]
)

Here, the client’s id and positions are originally unset as these are later set by the server.
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The client’s name and icon are temporarily set to default values as the user will enter
these on the first page. The list of rooms contains each room’s name along with an
initially empty list of members.

The current view of the model is initially set to ‘Options’ and this property is used by
the view function to determine that the initial options menu should be displayed to the
user. The ‘Options page’ allows the user to enter their name and select an icon to be
displayed as their character in the spatial view. This is also the stage at which they have
the option to choose whether they wish to enter the static or spatial view when they join
the video conference.

Once the MVU handler is set up, the client can then be registered with the server by
sending a ‘Register’ message to the server along with the client’s process identifier
(PID) such that the server can identify it. Here, the server will assign to the client a
unique numerical ID converted to a string. This ID will be used by clients to identify
one another and the server uses the associated PID to determine which process messages
should be forwarded to when only the string ID is specified. The server will then add
the mapping between the PID and its corresponding ID to its list of connected clients.
The server will also send a ‘SetMyId’ message to the client PID with the generated ID
as an argument which the client will dispatch as a ‘SetId’ message to its update function
which will in turn set the model’s own client ID to this value.

Upon entry to the application, the JavaScript Foreign Function Interface of the client is
also initialised with an empty dictionary ready to store data about any open connections
with peers. The property representing whether there is a local video stream associated
with the client is initially set to ‘False’ such that the client can wait for it to become
available before registering to the VCS. This registration will be described further in
Section 4.2

4.2 Entering a VCS View

4.2.1 Client Updates

Once a user selects a view preference, this will send an ‘EnterView’ message to the
client’s update function. This message causes the update function to first ask the FFI to
get the user’s local media stream and, before proceeding, the client repeatedly queries
the FFI until it discovers that the media stream has been fetched successfully as follows:

fun awaitVideoLoop(){
if (WebRTC.isLocalVideo()){
}
else{

awaitVideoLoop()
}

}

Meanwhile, the FFI will make requests to any user devices for any media which captures
audio or video like so:
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navigator
.mediaDevices

.getUserMedia(constraints)
.then(function success(stream) {

setLocalVideo(stream);
})

Upon success, it will add the video track to the HTML node containing the user’s local
video, and it will add both the video and audio tracks to a media stream which will be
sent to any connected clients. Finally, it will set the local media flag queried by the
Links client so that the client may continue its entry to the VCS.

Now that the user’s local media has been captured, the client needs to signal to the
server that it would like to be added to the VCS. Thus, the client sends a ‘RegisterIni-
tialClientPosition’ message to the server along with the client’s own ID and the name
and icon chosen on the options page. This step is also independent of the user’s chosen
view as the server’s actions and the client’s underlying MVU model will be the same.

Finally, while the server is processing this message, the update function will output a
new model which consists of the previous client model with the view state changed to
the option selected by the user. This state change will cause the view function to emit
the newly selected interface to the user.

4.2.2 Server Registration Process

Upon receipt of this ‘RegisterInitialClientPosition’ message, the server will register the
client to the VCS as follows:

case RegisterInitialClientPosition(id, name, icon)->
var newPos = getInitialGridPos(grid, id, name, icon);
var newGrid = updateGridSquareOccupants(

grid, -1, -1, newPos.xind, newPos.yind, 0);
var newPid = getPid(id, pids);
var currRoom = "None";
manageCalls(newPid, id, name, pids, currRoom, newPos.room);
broadcastCharacterMovement(

pids, newPos, id, name, currRoom, newPos.room);
connectionServer(newGrid, pids, rooms)

The server will start by finding the initial position and room information for the client.
It does this by iterating through all the squares in the grid until it finds an unoccupied
square whose room is set to ‘Lobby’. Once such a square is found, its pixel position
and room are extracted along with the indices in the grid at which it was found. The
server temporarily stores the client’s information along with its new grid indices, pixel
positions, and room name.

In the case that the server has other clients already connected, it then initiates a call
between the new client and those clients also residing in the ‘Lobby’. A full description
of how calls between clients are managed by the server is given in Section 4.4. Similarly,
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the server sends the new client’s position and information to all connected clients and
asks for their information which it can then forward to the incoming client. The
process of communicating changes in a client’s position is described in more detail in
Section 4.3.

The server will lastly update the state of the grid to reflect the addition of this new client
by iterating through the grid and replacing the square with a new square which has its
number of occupants incremented. This completes the server registration of the client.

4.2.3 Resulting Interface

Now that the client is registered to the VCS and the view state has been changed, a
new interface is shown to the user representing the current state of the VCS. Common
to both views is a button which allows the user to switch which view of the system
they currently see. When a user selects the button, a ‘StateChange’ message is sent
to the client’s update function along with which view the user would like to switch to
(‘static’ if they are currently in the spatial view and vice versa). The update function
will then output a new model with the view state updated and the view function will
begin outputting its HTML as defined by the new view state instead of the old state.

When the view state is set to ‘Spatial’, the view function will start by setting the
‘className’ property of the video container to ‘spatial’. This allows the CSS rules for
the video nodes in a spatial environment to take effect. The CSS rules for the spatial
view video elements are shown in Figure 4.1a.

In order to display the character icons and names in the correct map positions, the
‘getCharacterHTML’ function is used on each character. In the case of the client’s
own character, this function is called with the model’s ‘myPosition’ information as
an argument. In the case of other clients, it is called on each member of the model’s
‘othersPositions’ list. In both cases, the ‘getCharacterHTML’ function can then use the
xpos, ypos, icon, and name properties of the member to create nodes with their left,
right, background-image, and text properties set respectively.

These character nodes are added on top of a background image representing the map
along with the ‘Switch to static view’ button whose onClick property sends the ‘State-
Change’ message described above.

If the view state is set to ‘Static’, the view function will instead set the ‘className’ of
the video container to ‘static’ such that the correct CSS rules for video elements are
utilised. The static view CSS rules for videos can be seen in Figure 4.1b.

The static view does not need to generate a background image or characters as seen in
the spatial view. Instead, it iterates through each room stored in the model’s ‘rooms’
state creating buttons for each with their onClick property set to send a ‘ChangeRoom’
message to the update function. Within each button is stored the room’s name and a
list of nodes representing the name of each client in that room which is generated by
iterating through the ‘members’ property of the room. Finally, the ‘Switch to spatial
view’ button is created as in the spatial view function and this is output to the user’s
web page along with the previously created room nodes.
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(a) CSS rules for the Spatial View (b) CSS rules for the Static View

Figure 4.1: Side-by-side comparison of the video-related CSS rules for (a) the spatial
view and (b) the static view

.

4.3 Client Movement

4.3.1 Movement in Spatial View

While accessing the spatial view of the VCS, users are able to navigate the map of rooms
by using the arrow keys on their keyboard. This is possible due to the MVU handler’s
initialisation with a subscription module which is subscribed to the onKeyDown event
emitted by the browser when it registers the user pressing down a key. When an event
of this kind is triggered, the subscriptions function sends a ‘MovementEvent’ message
to the MVU update function along with the code associated with the specific key which
triggered the event.

Upon receipt of this message, the update function first checks that the view state of
the model is ‘Spatial’ since keypresses in other views should not cause any changes
to the system’s state. The function also checks to ensure that the code associated with
the pressed key is a valid code for causing movement: “ArrowDown”, “ArrowUp”,
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“ArrowLeft”, or “ArrowRight”. If so, a ‘CharacterMoved’ event is sent to the server
process such that it may update the system as described further in Subsection 4.3.3. This
message is sent along with the keypress code and the user’s current model information
such as ID, name, x/y index, room, and icon.

4.3.2 Movement in Static View

While accessing the static view of the VCS, users instead navigate between rooms
by selecting the room they would like to join from a list of available rooms. Each of
these room buttons has its ‘onClick’ property set such that it will send a ‘ChangeRoom’
message to the client’s MVU update function along with the associated room name.
Unlike the spatial view, this will instead send a ‘CharacterChangedRoom’ message to
the server process as described in Subsection 4.3.4. It includes similar information in
the message except that it sends the desired room rather than the key code.

4.3.3 Server Response - Spatial

Once the server receives a ‘CharacterMoved’ message it follows the following steps:

case CharacterMoved(currRoom, ...) ->
var newPos = getGridPos(...);
var newGrid = updateGridSquareOccupants(...);
broadcastCharacterMovement(...);
if (newPos.room <> currRoom){

manageCalls(...);
connectionServer(newGrid, ...)

}
else{

connectionServer(newGrid, ...)
}

It will first increment or decrement the user’s current x/y indices based on the given key
code to get the new grid position after moving in the given direction. The information
in the new grid square is used to find the new pixel position and room of the client and
the new information is stored ready to be broadcast. The grid is then updated to reflect
the change in the number of occupants in both the previous room and the new room.

With this new character information, the server will then begin to broadcast this to all of
its connected clients, including the moving client. To the client with an ID matching that
of the moving client, it will send a ‘Moved’ message to its PID along with the position
information indicating that it should update its own position. To each other connected
client process, it will send an ‘OtherMoved’ message with the new information to
indicate that the client should update its information about the moving client.

Lastly, if the new room does not match the old room, the server will end any calls the
moving client has with those clients in the previous room and begin calls with those in
the new room. This process is handled by the ‘manageCalls’ function which will be
described fully in Section 4.4.
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4.3.4 Server Response - Static

When the server receives the ‘CharacterChangedRoom’ message from a client in the
static view, it follows the following steps:

case CharacterChangedRoom(currRoom, newRoom, ...) ->
if (currRoom <> newRoom){

var newPos = getNewRoomPos(...);
var newGrid = updateGridSquareOccupants(...);
manageCalls(...);
broadcastCharacterMovement(...);
connectionServer(newGrid, ...)

}
else{

connectionServer(newGrid, ...)
}

It first checks that the new room selected is the same as the current room of the client
and if so, no changes should be made to the system.

If the client has entered a different room, then the server will begin by trying to allocate
the client an empty square in the new room. It does this by iterating through all the
squares associated with the new room until it finds an unoccupied square. Once such a
square is found, its pixel position and room are extracted along with the indices in the
grid at which it was found. Otherwise, the search will restart and look for a square with
a single occupant instead and this process repeats until a suitable square is found. The
server temporarily stores the client’s new information ready to be broadcast. The grid
is then updated to reflect the change in the number of occupants in both the previous
room and the new room.

The rest of the server’s response is then the same as it gives upon a movement to a new
room in the spatial view. First, the new client position and room changes are broadcast
to all clients registered to the VCS including the moving client itself such that their
model states may be updated. Then, the server will end any calls the moving client has
with those clients in the previous room and begin calls with those in the new room as
handled by the ‘manageCalls’ function which is described in Section 4.4.

4.3.5 Client Updates

The messages sent by the server to the client when the system state has changed are the
same regardless of whether the client is in the spatial view or the static view. Thus the
following functionality is common to all clients connected to the VCS.

When the client’s mailbox receives a ‘Moved’ message from the server along with its
new position, it needs to dispatch this message to its MVU handler such that its model
can be updated. This is because only the MVU’s update function can modify the model
in an MVU architecture. Thus, the client reacts to this message by calling the ‘dispatch’
function provided by Links and passing it an ‘IMoved’ message with the new positions
attached along with a reference to the client’s MVU handler whose Update function
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should receive the message. The ‘IMoved’ message will cause the update function to
output a new model with its ‘myPosition’ state set to the newly received information
which includes the new indices, pixel positions and room of the client.

Similarly, when a client mailbox receives an ‘OtherMoved’ message from the server, it
will dispatch this as an ‘OtherMoved’ message to the MVU update function. Here, it
will iterate through the list of rooms known by the client and if the room name matches
the previous room of the moving client, then it will remove the given client from the
member list of this room. Similarly, if the room name matches the client’s new room,
then the client’s new information will be added to the member list for this room. A new
model is then output with the ‘rooms’ state updated to reflect these changes.

4.4 Call Management

When the server determines that two clients should enter a call with one another, a
variety of messages must be exchanged between the server and the two clients for
them to establish a direct peer-to-peer WebRTC connection. A sequence diagram
summarising the flow of these messages is shown in Figure 4.2

Figure 4.2: A sequence diagram of messages sent to establish a WebRTC connection.

The ‘manageCalls’ function is called by the server when a client initially enters the
VCS or moves from one room to another. This function is responsible for broadcasting
messages to clients alerting them of any changes they should make to their RTC
connections as shown below.
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fun manageCalls(pid, id, name, currentPids, oldroom, newroom){
switch (currentPids) {

case [] -> ()
case p::ps ->

var otherPid = first(p);
if (second(p) <> id && third(p) == newroom){

otherPid ! OpenConnection(pid);
otherPid ! StartCall(pid)

}
else if (second(p) <> id && third(p) == oldroom){

otherPid ! CloseConnection(pid);
pid ! CloseConnection(otherPid)

}
else{};
manageCalls(pid, id, name, ps, oldroom, newroom)

}
}

To clients in the new room, the server will send an ‘OpenConnection’ and ‘StartCall’
message with the moving client’s PID. For each client in the moving client’s previous
room, the server will send the moving client’s PID in a ‘CloseConnection’ message to
the other client as well as sending a ‘CloseConnection’ message to the moving client
with the other client’s PID as the connection must be closed on both ends.

4.4.1 Opening a Connection

When the client receives the ‘OpenConnection’ message from the server, it needs to
set up a new RTC connection in preparation for a call with another client. Since this
requires the use of the WebRTC API, the client will delegate this task to the JavaScript
FFI by calling its ‘setupRTCConnection’ function which handles this request as follows:

function _setupRTCConnection(pid){
connection = new RTCPeerConnection(peerConnectionConfig);
connection.onicecandidate =

event => newIceCandidate(event, pid);
connection.ontrack =

event => newRemoteTrack(event, pid);
connection.addStream(localVideo);
peerConn = {

connection: connection,
iceCandidates: [],
isNewIceCandidate: false,
remoteElement: null,
hasRemoteAudio: false,
hasRemoteVideo: false,

};
peerConnections[pid._clientPid] = peerConn;}
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The ‘setupRTCConnection’ function will start by creating a new WebRTC connection
ready to connect the local client to a remote client and maintain this connection. Relevant
events that the connection listens for are each assigned a function which should be
called when the respective event is triggered. These events include the discovery of
a new ice candidate for the local client and the receipt of a new media track from the
remote client. Finally, the local video stream stored during the client’s initial entry
into the VCS is added to the connection ready to be sent to the remote client once the
connection is complete.

This connection is then added to a dictionary of information to be stored about the
current connection. Other properties added to this dictionary include an empty list of
remote ice candidates, an initially null reference to the HTML node which will display
the media for the remote client, boolean flags representing whether remote audio or
video have been found, and a final boolean flag demonstrating whether the local client
has any new ice candidates to send to the remote client. Finally, the dictionary of
information about this connection is then added to a full dictionary of all connections
the local client has with remote clients, with the key set to the remote client’s PID.

4.4.2 Call Initiation

When the client receives the ‘StartCall’ message, it will first task the JavaScript FFI to
create an offer Session Description Protocol by calling its ‘createOfferSDP’ function. As
the FFI function runs concurrently with the Links client, the Links client must repeatedly
query the FFI to ensure that the local session description for the current connection
has been set before proceeding. Meanwhile, in the ‘createOfferSDP’ function, the FFI
will tell the RTC connection to create an offer which will include the ICE candidates
available for the remote client to connect to the local client and a request for both audio
and video media streams.

Once the local offer has been successfully created, the Links client will retrieve it from
the FFI and send the offer to the server in a ‘SendOffer’ message along with both the
local and remote clients’ PIDs so that the server can forward this to the desired client.
Here, the server will first send an ‘OpenConnection’ message to the remote client as
before, followed instead by an ‘Offer’ message which includes the offering client’s PID
along with the SDP offer.

4.4.3 Receiving an Offer

The client’s response to receiving an ‘OpenConnection’ message has been described in
Subsection 4.4.1 and after setting up this RTC connection, the receiving client will then
process the ‘Offer’ message from the server.

First, the Links client will deliver the SDP offer it received from the initiating client
to the FFI for processing by calling its ‘receiveOfferSDP’ function. The Links client
will then await the completion of this function by repeatedly querying the FFI to ensure
the remote description on the connection has been set. Meanwhile, the FFI will set the
remote description of the previously created connection to the received SDP. As a result,
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the connection now knows which addresses are available for direct communication with
the peer and the type of media streams that have been requested.

Once the offer has been properly received, the Links client will continue by spawning
a new process to check for and handle any new local ice candidates which become
available. This process is described fully in Subsection 4.4.4. Then, the client will
request the FFI to create an answer SDP and await its creation. The FFI will use the
information stored in the connection about the remote offer to find suitable media and
server addresses and if it is happy with the offer received, it will create an SDP with its
return offer. The Links client will then fetch this SDP and send it in a ‘SendAnswer’
message to the server which will then forward the response to the initiating client.

When the initiating client receives the answer, it will follow a similar process. It will set
the remote description of the connection to the received SDP and then spawn a process
to handle any newly available ice candidates. Now, the connection is complete and
the peers will begin communicating their available media directly over the WebRTC
connection without going through the server.

4.4.4 Updating ICE Candidates

Upon a new ice candidate becoming available to a local client, the FFI function associ-
ated with the connection’s ‘onicecandidate’ event is called. This function will place the
new candidate in a list of newly available local ice candidates related to the connection
and set the ‘isNewIceCandidate’ flag.

While two peers are connected, they both have a process running which will check for
and send any new local ice candidates such that any changes do not prevent the peers
from communicating smoothly. The function run by this process is as follows:

fun getNewIceCandidates(mypid, serverPid, pid){
switch (WebRTC.getIsNewIceCandidate(pid)){
case "True" ->
var candidates = WebRTC.getNewIceCandidates(pid);
serverPid ! SendIceCandidates(mypid, pid, candidates);
getNewIceCandidates(mypid, serverPid, pid)

case "False" ->
getNewIceCandidates(mypid, serverPid, pid)

case "End" ->
()

}
}

This process will repeatedly query the FFI to check if any new candidates have been
collected and whenever this is true it will then ask the FFI to respond with one of these
new candidates. The FFI will then remove and return the first candidate in the list, and
once the list of new candidates is empty, it will unset the ‘isNewIceCandidate’ flag so
that the Links client will stop fetching candidates until more new candidates are added.

When the Links client receives a new candidate from the FFI, it sends it in a ‘SendIce-
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Candidates’ message to the server along with its own PID and that of the destination
client PID. Once forwarded by the server, the other client will instruct its FFI to add
this to the current list of remote ice candidates associated with this connection.

4.4.5 Closing Connections

When clients receive a ‘CloseConnection’ message upon a client’s exit from a room,
they will relay this to their JavaScript FFI by calling its ‘closeRTCConnection’ function.
This function will close the connection and remove the HTML node associated with the
remote client’s media stream. It will then delete the connection dictionary such that this
connection no longer exists.

To clean up the spawned processes for collecting new ICE candidates in the Links client,
when the FFI is queried to find whether there are new ice candidates and the connection
queried does not exist, it will return an “End” message causing the process to complete.



Chapter 5

Evaluation and Discussion

5.1 User Experience

The presented video conferencing system allows users to communicate live video and
audio with other clients in a variety of rooms and, as designed, they can choose whether
they wish to enter a spatial or static view of the system.

5.1.1 Spatial View

For the benefit of users who prefer a gamified experience when using a VCS, we have
successfully delivered a spatial view of our underlying system. This view offers a
similar interface as that of Gather.town [12] with rooms displayed on a visual map. In
our case, each room on the map represents a call between all the individuals in that room
and as such, each user is able to hear and see the video feeds of any users in their current
room. Users can easily navigate from room to room using the ArrowKeys on their
keyboard to move up, down, left, and right as they would do in most character-based
games they may be familiar with. This interface closely resembles how interactions
and meetings in real-life social spaces work in which people move to separate rooms to
have meetings or private conversations with a subset of people.

An unfortunate drawback of using only arrow keys to move around is that users accessing
the application on a mobile device cannot use the spatial view functionality since they
do not have access to arrow keys. This could be included through the addition of buttons
representing the arrow keys or a virtual joystick as is used in mobile games.

Unlike Gather.town, our application does not currently allow for interactions between
users based on the distance between their characters. This is because we prioritised the
support of interactions between users on both views and therefore used the simplest
underlying technical implementation to support this. Therefore, even if two users are
far away from each other on the map, they will still have a call between them if they
are in the same room. This is particularly evident in the ‘Lobby’ which represents any
space between all the other defined rooms and therefore encompasses a variety of areas
across the map.

34
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5.1.2 Static View

For those users who prefer a minimalistic VCS interface, we have successfully offered a
static view of the underlying system. This is more similar to the traditional VCSs which
most people are familiar with and therefore should be easy to get used to. Contrary to
traditional systems, the user still has access to all the rooms available to those in the
spatial view but has no concept of an underlying map or characters’ positions on this
map. The rooms are instead displayed in a list along with their current members from
which the user can select their desired room.

5.1.3 Cross-View Interactions

From the perspective of spatial view users, when other clients on the spatial view
move around, their characters will move from square to square accordingly and their
media will appear and disappear as the character enters or exits the user’s current
room. However, when other clients in the static view move from room to room, their
character will appear in the new room in one move and so they will appear to ‘teleport’.
Although this makes the movement seem less natural, it is necessary to ensure that
the understanding of the state of the system is consistent between all users on either
interface. If each static view user were placed on the same square, it would become
impossible to see most of the users in the room. Thus, when this ‘teleportation’ occurs,
the users are placed in an unoccupied square if one exists which proved an effective
solution to this problem.

From the perspective of the static view users, they will only see room changes which
will be displayed in the same way regardless of whether the other client is in the static or
spatial view. Thus, they will not see any intermediate movements of the spatial clients
until they enter a new room, at which point their name will be removed from the list of
members in their old room and added to the list of members in the new room.

If the user changes their mind about which interface they would like to see, all they
need to do is click the ‘Switch to Other View’ button which will change their interface
to the respective layout of the other view. This ensures users are not locked into their
original choice if they selected the wrong option and gives fluidity between views while
maintaining the correct view of the underlying system state.

5.2 Technical Evaluation

Through a variety of design choices, we have effectively developed a multi-view video
conferencing system using the Links programming language.

5.2.1 MVU

We found that using Links’ built-in MVU architecture proved very convenient for
maintaining the same underlying system state with alternate views built on top for
displaying this state. As hoped, we found that the main aspect of the code which had to
be tailored to enable both interfaces was the view function itself, with the client model
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remaining the same. This is well highlighted by the view-switching functionality which
only changes the selected view in the model in order for them to see the entirely new
interface with the system’s state maintained.

However, since the movement of characters from room to room differs between views,
it was found that some additional messages accepted by the clients’ Update function
and server had to be added. Fortunately, the additional code required was minimal
thanks to the use of the underlying grid structure.

5.2.2 The Grid

This underlying grid structure used to represent locations on the map proved to offer
a very simple method of supporting interactions between users on both views. For
clients in the spatial view, the server only needs to fetch the next square in whichever
direction the client is moving. For those in the static view, the server must search for an
appropriate square in the grid to place the user when they enter a room. This simply
involves iterating through each square within the known indices of the new room to find
an unoccupied square.

Finding such a square in the ‘Lobby’ proves less efficient as it does not have simple
rectangular borders within whose indices we can check for empty squares. However,
thanks to each square in the grid storing the name of the room in which it occurs, we can
still iterate through each square in the grid until we find an unoccupied square which
has its room set as ‘Lobby’.

Additionally, Links does not offer an inbuilt method for efficiently replacing a single
item in a list. As a result, each time we wish to update the number of occupants on a
grid square, this involves iterating through the entire grid to find the desired square and
replacing it. This results in a lot of computation on the server if many clients are moving
around and is likely to contribute to the lag experienced in the application with multiple
users present. The results of these updates are only used sparsely, either when a client
newly enters the VCS or when a static view user changes their room. Therefore, it may
prove more efficient to instead compute square occupancies only when this information
is actually needed to prevent wasted computation.

5.2.3 Interfacing with WebRTC

It was found that using the JavaScript Foreign Function Interface as outlined in the
design section enabled the Links code to interface with the WebRTC API functions
facilitating real-time peer-to-peer communication between clients. However, some of
the FFI functions made use of JavaScripts asynchronous functionality for which Links
does not currently have an appropriate method of handling. As a result, each time our
application needs to await the completion of a JavaScript function, we must spawn a
process which continuously checks whether the FFI function has finished. Having many
such processes running creates a lot of processing overhead but due to the lack of other
more efficient await functionality, this proved unavoidable.
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5.3 Testing

The nature of this project allows for primarily qualitative evaluation but it is also
important to ensure that the system can handle multiple users. This can be evaluated
without rigorous benchmarking as it is a trivial case of adding more users until the
system fails. Thus, we have tested the system both locally and remotely to explore how
the system scales in each case as can be seen in papers of a similar nature [4, 21].

5.3.1 Local Testing

In order to test that the application worked as expected, the server was first run locally
with separate tabs used as connecting clients.

It was found that the application could easily handle four connected clients, displaying
both video and movement data with little to no delay. However, after connecting five or
six clients at once, the movement and video data began to lag significantly, with seven
connected clients causing the application to become unusable.

The delay seen in the video stream transfer makes sense while running the system
locally. This is because, for each connected client, the same device must hold endpoints
for sending and receiving data at both ends of the connection. With five active users, this
amounts to five clients connecting to four other clients and thus, a total of 5×4 = 20 or
n(n−1) open connection endpoints.

The delay in character movement display could have been due to either the server or
the client being overloaded. However, it was discovered that when a client moved to a
separate room with a small number of other clients, the delay in character movement
display was reduced significantly. This demonstrated that the number of client WebRTC
connections must be the largest contributing factor to the delay even though the client
movement is not sent over WebRTC. Since very few messages are sent through the
server regarding ongoing WebRTC connections, this further implies that the issue lies
within the client itself. In particular, the processes spawned per connection to repeatedly
query the FFI for any new ICE candidates.

This discovery prompted the insertion of a short delay between each request to the FFI
such that the client can spend more time servicing other messages such as character
movement messages rather than continuously sending messages to the FFI which rarely
requires action. This alteration showed significant improvement in the display time of
character movements.

Local testing also revealed that when a client exits the application by refreshing the
page or closing the window, they are not removed from the system. As a result, their
video stream to other users will freeze but will not be removed and their icon and name
will continue to be displayed as if they are participating in the system. This highlighted
that the server would require an alerting mechanism such that when a client has left the
system it can be removed from the system and any relevant connections can be closed.
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5.3.2 Remote Testing

Remote testing was carried out using two devices connecting to the application. It
was observed that there is some delay before the remote video is displayed upon a
new connection being initiated but this delay is short when there are few connected
clients and grows slightly as more clients connect. This is likely due to there being
more concurrent processing occurring on the client with each new connection as well
as increased message traffic through the server.

As anticipated, more members can connect to the application without causing a sig-
nificant lag in the video streams since there are fewer connections maintained on a
single device. Unfortunately, we could not test exactly how many clients could connect
without lag as we did not have enough devices available. However, we found that with
two devices we could now connect six clients without experiencing significant lag and
this suggests that with more devices to spread out the connections, we could connect
more.



Chapter 6

Conclusions

6.1 Achievements

In conclusion, we have presented a system which successfully uses the Links program-
ming language to produce a video conferencing application. This system not only allows
the exchange of live video and audio data but also gives users a choice of interface for
interacting with this system.

The system offers a static interface similar to the traditional VCSs used in everyday
life, with the addition of a list of rooms available to join. The system also provides a
gamified spatial interface which gives the user an experience more synonymous with
real-life conversations in which the user navigates around a map of available rooms
which represent each group conversation.

These interfaces were implemented on top of the same underlying system state using
a model-driven design approach which also allowed us to offer a switch between
the displays at any point during the application. We found that this model-driven
approach was made particularly easy to implement using the built-in Model-View-
Update architecture supplied by Links.

We found that the system can successfully connect to and utilise the WebRTC API
which we accessed through the JavaScript Foreign Functions Interface provided by
Links. Additionally, this interface allowed us to successfully capture media from the
user’s devices.

Through testing the system on a single device, it was found that up to five users can
successfully connect without experiencing significant issues with the video streams and
using multiple devices allowed even more users to connect.

6.2 Future Work

The evaluation of the project highlighted some aspects of the system which could
be improved. One such aspect is the method by which the system places users in
unoccupied squares of the grid. Currently, this requires the system to update the entire
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grid every time a user’s character moves such that it reflects the occupancy of each
square. Instead, this process could be modified such that the system calculates the
occupancy of squares only when this information is required such as when a new user
joins the VCS or when a static interface user selects a new room.

Additionally, the spatial interface does not yet take into account the proximity of players
to one another as priority was given to developing the simplest implementation of
cross-view interactions. Having accomplished this basic implementation, a promising
future direction for this project would involve adding support for proximity-based
interactions. With only the spatial interface this would be relatively simple as it would
simply involve checking for users within adjacent squares and connecting to them.
However, representing these proximity-based conversations in the static view presents a
challenge. A potential method which could be explored is to add any of these proximity-
generated calls to the list of rooms available to join. Then, upon joining the conversation,
the user’s character position in the system will be updated to place them within the
proximity of these users.

The system is currently unable to handle users exiting the application by refreshing
the page or closing the window. Thus, an important future addition to the application
would be to interface with the ‘monitorConnection’ API which was recently added to
the standard Links library. This API signals when a client becomes unresponsive and
has therefore left the application. When this occurs, we would instruct the server to
remove the client from its state and wrap up any ongoing connections.

Another future improvement to our system would involve adding support for mobile
devices as some functionality is currently lacking for these devices. For this to work,
the spatial view would need to accept touch input through either buttons or a joystick
interface for navigating the map. Additionally, we would also update the CSS to ensure
an appropriate layout is presented on mobile devices.

Finally, it would be beneficial to add a variety of additional features usually offered by
video conferencing applications such as screen sharing, selective muting, and text-based
conversations.
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