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Abstract
Regular expressions are widely used for pattern matching in programming languages,
but many of production-grade engines are susceptible to evil regular expression patterns,
which are patterns that are specifically crafted to dwarf the performance of systems or
even crash them. This includes Links language, which is the source of motivation for
this dissertation. In addition to being susceptible to evil regular expression patterns, it
also has mismatched regular expression engines between the server and client sides. We
make an effort of solving both of these problems by providing our own implementation
of regular expressions.

We restrict the scope of regular expressions to those that were originally defined
by Kleene to make objectives more tractable. We implement regular expressions using
two different approaches in OCaml and then make an attempt of integrating our code
into Links. OCaml is our choice of language because Links’ implementation language is
OCaml as well and there exists a compiler from OCaml to JavaScript for the client side.
The first approach of implementing regular expressions is based on nondeterministic
finite automata. For the other approach, we consider a lowering of the nondeterministic
finite automata into a virtual machine with its own bytecode format. Then, we make
a prototype of integrating virtual machine approach into Links language for regular
matching. Finally, we compare the performance of our implementations of regular
expressions to a widely used V8 JavaScript engine.
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Chapter 1

Introduction

Regular expressions are a powerful tool used by developers to match and manipulate
text. They are used in a wide range of applications such as searching for and replacing
strings, data validation, and parsing input from users. The ability to define patterns that
match text using regular expressions makes them a crucial tool in modern programming
languages and operating systems. For example, regular expressions are the cornerstones
of widely used search programs such as grep [10] and sed [25].

However, it is challenging to implement regular expressions in a way that yields good
performance for all possible inputs. This is especially true for evil regular expression
(evil regex) [31] patterns, which are patterns that are specifically crafted to dwarf
the performance of systems or even crash them. These evil expression patterns often
exploit a similar weakness present in the implementation of regular expression engines,
namely, that their implementations rely on some form of backtracking. For many cases
the backtracking is not a problem as many regular expression patterns do not cause
repeated backtracking to occur. Backtracking makes the asymptotic worst case run time
complexity exponential in the size of the input. Evil regular expression patterns trigger
this exponential time behaviour.

Many production-grade engines such as V8 [12] are susceptible to evil regular expres-
sion patterns [31]. The problem is also present in research-grade engines such as the
one that powers the regular expressions of the Links programming language [4]. In
the case of Links, there is an extra dimension to the problem, as Links is a tierless
programming language that allows code to flow seamlessly between the client and the
server. Thus, a malicious client can craft an evil regular expression pattern and send it
to the server to cause it to stall. In fact, it can be even worse as Links supports multiple
clients connected via the same server [9]. Consequently, it is possible for a malicious
client to send code, that embeds an evil regular expression pattern, via a common server
to another client, whose execution environment will freeze, or crash, upon executing
the received code.

There are multiple ways to implement regular expression matching. In this dissertation
we will consider two distinct approaches. First, we consider an implementation tech-
nique based on nondeterministic finite automata. This technique is well studied [28]. It
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Chapter 1. Introduction 2

is a fairly high-level technique in the sense that it works over transition graphs. Second,
we consider a lowering of the nondeterministic finite automata into a virtual machine
with its own bytecode format [7]. This allows to more efficiently do regular matching
by being more low-level, and it is more versatile: it is easier to implement new features
by adding new bytecode instructions in the future.

1.1 Goals, scope and contributions

The goal is to implement regular expressions in multiple ways in functional program-
ming language OCaml. We choose OCaml because it is the implementation language
of Links. Following that, another goal is to evaluate the performance of these imple-
mentations to already existing implementations that are used in the real world. More
specifically, the goal is to test the performance of these implementations against inputs
that are specifically crafted to exploit the weakness of those implementations.

The resulting code from this dissertation can then be integrated into Links programming
language to better support regular expressions. Code is self-contained, does not have
any dependencies and is easy to use.

Production-grade regular expressions often tend to be large and complex by supporting
many features that go beyond formal definition of regular expressions. In this dis-
sertation, we restrict our attention to implementing regular expressions as originally
defined by Kleene [19]. These regular expressions are well-understood and make the
objectives of this dissertation more tractable. This means that such constructs as anchors
or backreferences, that are widely implemented in production-grade applications, are
not in the scope of this dissertation.

The following objectives were identified and achieved:

• Identification of evil regular expressions that break some implementations of
regular expressions, more specifically V8 JavaScript engine.

• Implementing regular expressions using NFA and Thompson’s construction in
OCaml.

• Implementing regular expressions using Virtual Machine approach in OCaml.

• Measuring the performance of both of the implementations and comparing it to
the V8 JavaScript engine. This includes testing evil regular expressions and their
effect on the implementations.

• Making a prototype of our implementation integration into Links.

1.2 Outline

This dissertation is structured as follows.

• Chapter 2: describes the background of the work taken in this dissertation by
introducing Links programming language and regular expressions.
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• Chapter 3: discusses and provides the implementation details of the NFA and
VM approaches for implementing regular expressions.

• Chapter 4: evaluates the performance of the implementations through a series of
experiments.

• Chapter 5: concludes the dissertation and discusses future work.



Chapter 2

Background

In this chapter we will discuss Links programming language and how it tries to solve
the impedance mismatch problem in web development. In addition, we will define what
regular expressions are, how they relate to finite automata, a current implementation of
regular expression matching in Links, and how some implementations can be broken by
carefully crafted regular expressions and inputs.

2.1 Links

This section highlights the main features of Links, the programming language that is at
the centre of this dissertation, and its problems with regular expressions.

2.1.1 Impedance mismatch problem

Server Browser Database

request

response

request

response

Figure 2.1: Three tiers of the web

In traditional web programs there are three tiers: the client tier, the server tier, and
the database tier (as seen in Figure 2.1). The client tier’s purpose is to serve the user
interface and handle user’s input. Most often it uses web technologies such as HTML,
CSS, and JavaScript. The server tier is for processing the user’s input, handling business
logic, and providing the response. This tier is usually implemented with object-oriented
programming languages such as Java, Python, and PHP. The database tier is responsible
for storing and fetching the data. It most often uses relational databases such as MySQL
and PostgreSQL.
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Chapter 2. Background 5

The use of different programming languages for the source codes of each web tier leads
to impedance mismatch problem. This is because each programming language has their
own interfaces and represents data in their own ways using different data structures. As
a result, it becomes challenging to transport data between each of the tiers effectively.
This leads to the use of ad hoc and error-prone serialization schemes to transfer data
between the different tiers. In addition, it often leads to poor performance.

Stonebraker et al. [29] describes one of the most notable examples of the problem of
impedance mismatch between the server tier that uses an object-oriented programming
language to access data from a relational database. These two paradigms have funda-
mentally different data models and structures, which make it difficult to map objects to
tables and vice versa.

Similarly, Jacobsen [18] has described the impedance mismatch problem between the
server and client tiers. Due to the use of different data structures to represent data, there
is a need for some sort of serialization and deserialization of data while transporting it
between the tiers. This incurs a run time performance penalty that could be avoided. To
avoid this penalty and bridge the gap between the server and client tiers, a middleware,
as described by Jacobsen [18] in the same paper, could be used.

2.1.2 Links

Links is a programming language whose goal is to solve the impedance mismatch prob-
lem in web development [4]. It eliminates the potential problem of having mismatched
data types between tiers by providing a single language for all three web tiers. Code for
all the tiers gets generated from a single source: it gets compiled into JavaScript for the
client side and SQL for the database, while the server side is run with OCaml.

Links is a strict, statically typed, functional language. It incorporates many com-
mon features found in functional programming languages such as first-class functions,
immutable data, algebraic data types, it also includes features tailored for web program-
ming such as formlets as an abstraction of webforms [5], code mobility between tiers,
an integrated database query language, a message-passing concurrency model to enable
modular compartmentalization of interactive components. More recently, Links has
been extended with effect handlers to support user-definable computational effects in
direct-style [14, 15], session types to type communication protocols [20, 9], incremental
relational lenses for updatable views in databases [17].

Links also includes support for regular expressions, which is the main topic of this
thesis. Regular expressions are second class citizens in Links, meaning that they cannot
be passed as arguments to functions or returned from functions. Instead, a regular
expression is defined inline when testing some string, for instance the expression
str =~ /ab*a/.

Currently, a naïve implementation is used for the regular expressions for string matching
in Links, which means it is susceptible to particular kinds of regular expressions
which can lead to evaluations running in exponential time or potentially cause stack
overflows. In addition, the current implementation of regular expressions in Links does
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not guarantee the same evaluation on all the tiers, which contributes to the impedance
mismatch problem as discussed in Section 2.1.1.

More on regular expressions and potential problems with their naïve implementation in
the next sections.

2.2 Regular expressions

The notion of regular expressions was first introduced by mathematician Stephen Kleene
in 1956 [19]. Computer scientist Ken Thompson adapted the mathematical theory as
presented by Kleene and popularized the use of regular expressions for string searching
while developing Unix operating system in 1960s and 1970s. This later led to the
development of now widely popular string searching programs such as grep [10] and
sed [25], for which regular expressions are the cornerstones of their functionality. These
types of regular expressions, that go beyond the original theory as laid out by Kleene,
are now publicly called as regex in short. In this dissertation, we will focus more on the
regular expressions as defined by Stephen Kleene, which have rich mathematical theory
behind them.

A regular expression is a compact notation for describing sets of characters [6]. Rather
than listing strings one by one that are contained in some set, it is more convenient
to describe this set using regular expressions. As an example, three strings such as
“Edinburgh”, “Hamburg”, and “Tilburg” could be represented as a regular expression
(Edin ‖ Ham ‖ Til)burgh?. When a string is in the set defined by a regular expression,
it is commonly said that the regular expression matches the string. So (Edin ‖ Ham ‖
Til)burgh? matches “Edinburgh” in this example. Here ‖ symbol means matching either
“Edin”, “Ham”, or “Til”. Then, the matching expects string “burg” and finally h? is for
optionally matching character h. In addition, multiple different regular expressions can
describe the same set of strings. For (Edin ‖ Ham ‖ Til)burgh? case, (Edi ‖ Ham ‖
Til)(burg ‖ nburgh) would also be a valid representation of the same set of strings.

Regular expressions are closely related to finite automata, as they are often used to
recognize a specific language, which is also a set of strings [28]. More details on this
later in the chapter.

2.2.1 The syntax

The following grammar defines the syntax of fairly standard regular expression lan-
guage.

R ::= ε | char | R1 ◦R2 | R1 ‖ R2 | (R) | R∗ (2.1)

Informally, the language constants and operators are interpreted as follows.

• The empty expression ε matches an empty string. It means that it has no actual
pattern to match, but still can be used as a valid regular expression for building
more complex regular expressions.
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• The basic building block of a regular expression is a character, char, which is
drawn from some finite alphabet Σ. A character matches only itself.

• The concatenation operator (◦) forms an expression which matches the sequence
of the subexpressions R1 and R2. Often the operator is implicit, that is, we often
write R1R2 to mean R1 ◦R2.

• The choice operator (‖) forms an expression which matches both R1 and R2.

• The notation (R) means grouping, it has the highest precedence of all the opera-
tors.

• The asterisk operator (−∗) matches zero of more occurrences of the preceding
expression R. It is also known as the Kleene star [28].

The precedence order of the operators from the strongest binding to lowest: grouping,
then Kleene star, alternation, and finally concatenation.

This syntax given above is enough to describe all regular languages [28].

Production-grade regular expression languages often offer more operators such as R?

and R+, which means optionally match R and match one or more repetitions of R,
respectively. These two operators happen to be expressible in terms of basic language
given above, i.e. R? = R ‖ ε and R+ = RR∗. Nevertheless, they may be included in a
language for reasons of efficiency. Another thing one might find in a production-grade
regular expression languages is finite repetition notation, e.g. R{n} means match n
repetitions of R. But with such additions we begin to leave realm of formal regular
expression languages and then start to enter the realm of what is usually referred to as
regexes.

2.2.2 Finite Automaton

As mentioned before, regular expressions can also be expressed as finite automaton [28].
Regular expressions and finite automata have the same expressive power. Regular
expressions can be converted to finite automaton and vice versa. There are two types
of finite automata that are involved in conversions: nondeterministic finite automata
(NFA) and deterministic finite automata (DFA). The main difference is that NFA can
have more than one possible next state for a particular input character, while for DFA
there is only one possible next state for a given symbol from each state.

There are several algorithms for doing conversions between finite automata and regular
expressions. To convert from a regular expression to a nondeterministic finite automaton,
the two most common algorithms are used: Thompson’s construction algorithm [30]
and Glushkov’s construction algorithm [11]. To convert a finite automaton to a regular
expression, Kleene’s algorithm [19] can be used. An adaptation of this algorithm for
conversion between deterministic finite automata and regular expressions has been given
by Hopcroft et al. [16], while conversion between nondeterministic finite automata and
regular expressions has been described by Gross and Yellen [13].

As an example, regular expression a(bb)+a is equivalent to the finite automaton shown
in Figure 2.2, which in this case is deterministic. The state machine starts in the state
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s0 and then transitions to the state s1 when it reads an a character. Similarly, the state
machine transitions to state s2 when b is read and then s3 when another b is read. Now
from state s3 there are two options: the state machine will transition to the accepting
state s4 if it reads the character a, while it will loop back to the state s2 if it reads the
character b. As it can be seen, there are no transitions with the same label from any of
the states, so the given finite automaton is deterministic.

s0 s1 s2 s3 s4
a b b a

b

Figure 2.2: Deterministic finite automaton for a(bb)+a

As another example, the same a(bb)+a regular expression can also be expressed as a
nondeterministic finite automaton (Figure 2.3). Once again, the state machine starts
in state s0, transitions to state s1 after it reads character a, and then transitions to state
s2 after it reads b. Now when it reads character b again, it transitions to two states
simultaneously: s3 and back to s1. Being in more than one state at a time makes this
finite automaton nondeterministic. From s1 it can go back to state s2 when it reads
character b, or it can end up in the accepting state s4 when it reads character a.

s0 s1 s2 s3 s4
a b b a

b

Figure 2.3: Nondeterministic finite automaton for a(bb)+a

2.2.3 Naïve algorithm for search

A naïve algorithm implementing regular expression search would convert a regular
expression into a nondeterministic finite automaton and then simulate it. For guessing
the next state when there are multiple options, one of the choices can be explored first
and then later backtracked if it does not work.

This naïve algorithm works in most cases, but for some specific inputs (described in the
next subsection) it can take long time evaluate due to backtracking, as all the possible
paths must be tried and the number of paths can be exponential.

2.2.4 Evil regular expressions

A regular expression, that could get stuck or break on a specially crafted input, could be
called as a evil regular expression, or evil regex in short [31]. These kinds of regular
expressions can be exploited in Regular expression Denial of Service (ReDoS) attacks,
as supplying a crafted input can hang or crash the system. So, there are two types of
regular expressions: those that run indefinitely given some simple and short input, or
those that crash given a large enough input.
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2.2.4.1 Running indefinitely

As previously discussed, inputs on particular regular expressions can run slowly due
to exponential number of paths that have to be tried. For example, regular expression
ˆ (a+)+ $ [31], which can be expressed with NFA (Figure 2.4), has an exponential
number of paths.

s0 s1

s2

s3 s4
a

a

a

a

a

a

a

a a

Figure 2.4: NFA for ˆ(a+)+ $

There are exactly 2n paths for an input containing n characters of a. This leads to the
runtime of O(2n). The performance of this regular expression on V8 engine can be seen
in 2.5 Figure.

2.2.4.2 Stack overflow

Some programming languages have implemented memoization to avoid backtracking
for particular regular expressions, but they are still vulnerable to stack overflow issue.
Stack space is used for backtracking, and it is linear to the size of the input. This causes
certain implementations to run out of stack space. An example can be seen in V8
engine:

d8> const re = /^(ab?)*$/

d8> re.exec("a".repeat(10000000))

(d8):1: RangeError: Maximum call stack size exceeded
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Figure 2.5: Performance of ˆ(a+)+ $ in milliseconds based on input size in V8



Chapter 3

Implementation

We use OCaml as the language to implement regular expressions, since Links uses
OCaml for the server side, JavaScript for the client side, and there exists a compiler from
OCaml to JavaScript. In this chapter we apply two main approaches for implementing
regular expressions: one based on nondeterministic finite automata and another based
on virtual machines. The goal of using virtual machine approach is to generate bytecode
that is almost like a representation of nondeterministic finite automata at a lower level.
These both approaches are then compared to each other and to widely used JavaScript
engine V8 in Chapter 4.

3.1 Regular expression parser

To start with, we use an algebraic data type to represent the syntax of regular expressions:

type t =

| Eps (* Empty string *)

| Char of char (* Character, e.g. a, b, c, ... *)

| Alt of t * t (* Choice, e.g. a|b, ab|ba, ... *)

| Seq of t * t (* Concatenation, e.g. aa, abba, ... *)

| Star of t (* Kleene closure, e.g. a*, ab*a, ... *)

| Plus of t (* Transitive closure, e.g. a+, ab+a, ... *)

| Opt of t (* Optional, e.g. a?, ab?a, ... *)

This representation is almost a direct transliteration of the grammar given in Equation 2.1
extended with the transitive closure operation (−+) and the optional operator (−?).

Following that, we have a recursive parser (adapted from [24]) to parse a string rep-
resentation of a regular expression into a tree-like structure that is more suitable for
further compilations by both of the mentioned approaches of implementing regular
expression matching. It works over a stream of tokens (in this case a list of characters),
which gets generated by a simple lexer, which in this case just explodes a string into a
list of characters.

let rec seq = function

[] -> assert false

11
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| [x] -> x

| x :: xs -> Seq (x, (seq xs))

let rec parse’ str ps = match (str, ps) with

| ([], _) | (’)’ :: _, _) -> (seq (List.rev ps), str)

| (’(’ :: rest, _) ->

begin match parse’ rest [] with

| (r, ’)’ :: rest) -> parse’ rest (r :: ps)

| _ -> raise Unbalanced

end

| (’|’ :: rest, p :: ps) ->

let (other, rest) = parse’ rest [] in

parse’ rest (Alt (p, other) :: ps)

| (’*’ :: chs, p :: ps) -> parse’ chs (Star p :: ps)

| (’?’ :: chs, p :: ps) -> parse’ chs (Opt p :: ps)

| (’+’ :: chs, p :: ps) -> parse’ chs (Plus p :: ps)

| (c :: chs, _) -> parse’ chs (Char c :: ps)

The recursive parser parse’ takes in a list of characters (given by the lexer) and a list of
currently processed regular sub-expressions, and matches them against these cases:

1. If either the remaining list of characters is empty or the end of the group is
reached (given by the character )), put all currently processed sub-expressions
into a regular expression that represents a sequence by calling seq function.

2. If the current character is ( (an indication of the start of a group), then recursively
process that group and expect to find the end of the group character ). If the end
of the group character is not found, then an exception (unbalanced parenthesis) is
raised.

3. If the current character is an alternation character |, then recursively process
the rest of the characters and combine the results into a regular expression that
represents alternation.

4. If the current character is a repetition character *, ?, +, then wrap a currently
processed regular sub-expression into an appropriate regular expression.

5. If the current character is not one of the special characters, then add a regular
expression that matches that character.

Since each token (or a character) is only processed once, it is apparent that the asymp-
totic complexity of this parser is O(n), where n is the length of the token stream. The
lexer explodes the string into a list of characters. It has the asymptotic complexity of
O(n) as well, where n is the length of the string.

3.2 Nondeterministic finite automaton

Thompson’s construction is an algorithm for transforming a regular expression into
an equivalent nondeterministic finite automaton. The algorithm is named after Ken
Thompson, who wrote down the algorithm in the late 60s [30]. However, the algorithm
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is sometimes also refereed to as McNaughton-Yamada-Thompson algorithm [1], as
McNaughton and Yamada developed a similar algorithm in the early 60s [22].

We use this data type to represent an NFA:

module StateSet = Set.Make(Int)

module AlphSet = Set.Make(Char)

type transition = { q : int; sym : char; q’ : int }

type etransition = { eq : int ; eq’ : int }

type nfa = {

states : StateSet.t;

alph : AlphSet.t;

trans : transition list;

etrans : etransition list;

start : StateSet.t;

final : StateSet.t;

}

Here states is a set of all reachable states indexed by integers, alph is a set of input
alphabet, trans is the list of transitions with starting and accepting state indexes and
a transition symbol, etrans is the list of empty transitions with starting and accepting
state indexes, start is a set of starting states, final is a set of accepting states.

3.2.1 Building the NFA

The algorithm recursively splits expressions into sub-expressions and then constructs
NFA for each of those sub-expressions using predetermined rules. The constructed NFA
follows these properties:

• NFA has only one starting state, which does not have any incoming transitions.

• NFA has only one accepting state, which does not have any outgoing transitions.

• Each state in the NFA has at most two outgoing transitions.

• The number of states is equal to 2n−m, where n is the number of symbols apart
from parentheses and m is the number of concatenations.

There are five rules for converting any regular expression into NFA, as described by Aho
et al. [1]. Let N(R), N(R1) and N(R2) correspond to nondeterministic finite automata
for regular expressions R, R1, and R2, respectively.

Empty expression ε gets converted to

qstart f
ε
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In code, we add both of the new states to the set of states, set the first state as starting
state, second state as final state, and add an empty transition between those two states:

let nullNfa = {

states = StateSet.of_list [0; 1];

alph = AlphSet.empty;

trans = [];

etrans = [{eq = 0; eq’ = 1}];

start = StateSet.of_list [0];

final = StateSet.of_list [1];

}

Single character a gets converted to

istart f
a

In code, similar to the conversion of empty transition, we add a new starting and a new
final state to the list of states, add a transition between these states that match the given
character, and add that character to the alphabet.

let charNfa a = {

states = StateSet.of_list [0; 1];

alph = AlphSet.of_list [a];

trans = [{q = 0; sym = a; q’ = 1}];

etrans = [];

start = StateSet.of_list [0];

final = StateSet.of_list [1];

}

Sequence R1 ◦R2 gets converted to

istart f
N(R1) N(R2)

The starting state of N(R1) becomes the starting state q of the newly generated NFA.
The accepting state of N(R1) becomes the starting state of N(R2). The accepting state
of N(R2) becomes the accepting state f of the newly generated NFA.

In code, first, the states of both of the NFAs are reindexed, so that there are no collisions
of state indexes. Then, all the states, transitions and empty transitions are combined. In
addition, an empty transition is added between the start state of the first NFA and the
accepting state of the second NFA. The starting state of the first NFA becomes the new
starting state of the newly generated NFA. Similarly, the accepting state of the second
NFA becomes the new accepting state of the whole NFA.
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let concatNfa a b =

let concatNfa’ a b = {

states = StateSet.union a.states b.states;

alph = AlphSet.union a.alph b.alph;

trans = List.append a.trans b.trans;

etrans = List.append (List.map2 (fun x y -> {eq = x; eq’ = y})

(StateSet.elements a.final) (StateSet.elements b.start))

(List.append a.etrans b.etrans);

start = a.start;

final = b.final;

}

in concatNfa’ (reindexNfa a 0)

(reindexNfa b (StateSet.cardinal a.states))

Alternation R1 ‖ R2 gets converted to

istart f

ε

ε

ε

ε

N(R1)

N(R2)

A new starting state i is added with two outgoing empty transitions to both starting
states of N(R1) and N(R2). The accepting states of both N(R1) and N(R2) become
regular states and have outgoing empty transitions to the new accepting state f .

In code, the conversion starts at the function unionNfa. First, once again, the states of
both NFAs get reindexed. Then, all the states, transitions, and empty transitions are
combined by the function unionNfa’. This results in an NFA that has more than one
start and final state, which violates the properties stated at the start of this section, so a
function called thompson is used to convert the NFA into a right one. It creates a new
starting and a new accepting state, and adds empty transitions between each pair of the
new starting state and old starting states. The same is done between each pair of the
new accepting state and old accepting states.

let thompson a =

let thompson’ a start final = {

states = StateSet.add start (StateSet.add final a.states);

alph = a.alph;

trans = a.trans;
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etrans =

List.append a.etrans

(List.append (List.map (fun x -> {eq = start; eq’ = x})

(StateSet.elements a.start))

(List.map (fun x -> {eq = x; eq’ = final})

(StateSet.elements a.final)));

start = StateSet.singleton start;

final = StateSet.singleton final; }

in

let start = StateSet.cardinal a.states in

let final = StateSet.cardinal a.states + 1 in

thompson’ a start final

let unionNfa a b =

let unionNfa’ a b = {

states = StateSet.union a.states b.states;

alph = AlphSet.union a.alph b.alph;

trans = List.append a.trans b.trans;

etrans = List.append a.etrans b.etrans;

start = StateSet.union a.start b.start;

final = StateSet.union a.final b.final;

}

in thompson (unionNfa’ (reindexNfa a 0)

(reindexNfa b (StateSet.cardinal a.states)))

Kleene star R∗ gets converted to

istart f
ε

ε

ε

ε

N(R)

New starting state i and accepting state f are created with empty transitions from and
to N(R). An empty transition between i and f is added for the case when there are no
repetitions. An empty transition between the accepting and starting states of N(R) is
added for the case when there are repetitions.

In code, a new starting state and a new accepting state are created and added to the
set of already existing states. For empty transitions, three different ones are created.
First, an empty transition is added between the newly created start and accepting states.
Second, an empty transition is added between the newly created start state and already
existing start state in the given NFA. Similarly, an empty transition is added between
the new accepting state and the old accepting state.
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let starNfa a =

let starNfa’ a start final = {

states = StateSet.add start (StateSet.add final a.states);

alph = a.alph;

trans = a.trans;

etrans =

{eq = start; eq’ = final} ::

(List.append (List.map2 (fun x y -> {eq = x; eq’ = y})

(StateSet.elements a.final) (StateSet.elements a.start))

(List.append a.etrans

(List.append (List.map (fun x -> {eq = start; eq’ = x})

(StateSet.elements a.start))

(List.map (fun x -> {eq = x; eq’ = final})

(StateSet.elements a.final)))));

start = StateSet.singleton start;

final = StateSet.singleton final;

}

in starNfa’ a (StateSet.cardinal a.states)

(StateSet.cardinal a.states + 1)

3.2.2 Compilation

The Thompson’s construction algorithm starts at the function compile. It takes in a
parsed regular expression (as described in Section 3.1), uses the construction rules as
described in previous section to recursively construct the NFA, which can then be used
for matching.

Compilation function:

let rec compile = function

Eps -> nullNfa

| Char a -> charNfa a

| Alt (a, b) -> unionNfa (compile a) (compile b)

| Seq (a, b) -> concatNfa (compile a) (compile b)

| Star a -> starNfa (compile a)

| Plus a -> compile (Seq (a, Star a))

| Opt a -> compile (Alt (a, Eps))

The operators (−?) and (−+) get desugared to equivalent regular expressions that only
use sequence, alternation and star symbol. That way there is no need for any custom
construction rules for these symbols.

3.2.3 Simulating the NFA

The input string is read one symbol at the time and all the active states are advanced to
the next state according to the read symbol. In addition, all empty transitions are taken
as well. This means that the state machine can be in multiple states at once. This allows
to avoid backtracking, when only one state at the time could be active and backtracking
would be used to go back if the state does not end up at the accepting state.
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Figure 3.1: Example of NFA simulation
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An example (adapted from [6]) for the regular expression abbb ‖ abab and input string
abbb can be seen in Figure 3.1. The simulation starts at the starting state and all the
states that are reachable from the starting state via empty transitions, as can be seen in
step 0. In steps 1 and 2, machine gets advanced while being in two states simultaneously.
In step 3 only one active state remains, with step 4 reaching accepting state.

Code

let rec accepts nfa str =

match str with

| [] -> (* Check that the accepting state is active *)

| h :: hs -> accepts (move nfa h) hs

The matching algorithm begins at the accepts function, which recursively advances the
states in the NFA one character at the time. For each active state, it takes all appropriate
transitions according to the read symbol. In addition, it takes all the appropriate empty
transitions (multiple times if needed), until all the states reachable by empty transitions
are in the active list.

When the input string is fully processed, it checks if the accepting state is active. If it is
active, then the regular expression matches the provided input string, otherwise it does
not match.

3.2.4 Asymptotic complexity

In the worst case, the NFA can be at all the states at each step, but this only results
in a constant time of work, as it only depends on the size of the regular expression
rather than the input string. So this improves the backtracking solution, which required
exponential time to process particular input strings. It is efficient because only the active
states are tracked rather than the set of paths that have been taken at any point. There
are only 2n−m states, where n is the number of symbols in the regular expressions and
m is the number of concatenations, so overall the asymptotic complexity is O(n).

3.3 Virtual machine

The second approach of implementing regular expressions, that we compare to the NFA
approach, is based on implementing a virtual machine (VM) and is adapted from the
description of Cox [7]. The basic idea is to implement instructions at a lower level,
which would encode the NFA graphs. The VM executes a list of threads, each thread
maintains its own program counter.

Definition of instructions:

• Char a: if the current character is not a, kill the thread. Otherwise, read the next
character and advance the program counter.

• Match: the thread found the match, stop it.

• Jump x: jump to the instruction x.
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• Split x, y: split the current thread. Current thread continues with the instruction
x. New thread is created with the program counter pointing to instruction y.

We use this representation of an instruction in code, matching the description above,
with ptr denoting a pointer into the instruction stream:

module Inst = struct

type ptr = int (* Instruction pointer *)

type t =

| Char of char (* Match a character *)

| Match (* Match found *)

| Jump of ptr (* Move pc to ptr *)

| Split of ptr * ptr (* Fork two threads *)

end

For representing a thread in the virtual machine, we use Thread that basically encapsu-
lates the instruction pointer:

module Thread = struct

type t = Inst.ptr

let make : Inst.ptr -> t

= fun inst -> inst

end

3.3.1 Translating into bytecode instructions

J−K : Nat×Regex.t→ Inst.t list

JεKo = []

JaKo = [Char a]

JR1 ◦R2Ko = JR1Ko ++JR2Ko+|R1|

JR1 ‖ R2Ko = [Split (o+1), (o+2+ i)]
++ JR1Ko+1
++ [Jump (o+2+ i+ j)]
++ JR2Ko+2+i where i = |R1| and j = |R2|

JR∗Ko = [Split (o+1), (o+2+ i)]
++ JRKo+1
++ [Jump o] where i = |R|

JR?Ko = [Split (o+1), (o+1+ i)]
++ JRKo+1 where i = |R|

JR+Ko = JRKo
++ [Split o, (o+1+ i)] where i = |R|

Figure 3.2: Translation rules for regular expressions
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|− | : Regex.t→ Nat

|ε| = 0

|a| = 1

|R1 ◦R2| = |R1|+ |R2|
|R1 ‖ R2| = 2+ |R1|+ |R2|
|R∗| = 2+ |R|
|R?| = 1+ |R|
|R+| = 1+ |R|

Figure 3.3: The length of the instruction sequence for a particular regular expression

Figure 3.2 and Figure 3.3 formally define the translation of a regular expression into
bytecode instructions based on the grammar in Equation 2.1. Function in Figure 3.2 is
parameterized by an offset, o, into the instruction stream and a sub-expression, R.

Going through all the definitions one by one:

• Empty expression ε gets converted into an empty list of instructions and thus the
length of the instruction sequence for it is equal to 0.

• Single character a only generates Char instruction and thus, the length of the
instruction sequence is equal to 1.

• Sequence R1 ◦R2 is simply a concatenation of instruction sequences generated
from R1 and R2. Thus, the lengths of the instruction sequences get added together
as well. Note, index of the first instruction generated from R2 follows the index
of the last instruction from R1.

• Alternation R1 ‖ R2 gets generated as follows: first instruction in the sequence
is a Split, with o+1 and o+2+ i as targets. Here o+1 is the first instruction
of R1 and o+ 2+ i is the first instruction of R2. Then, the Split instruction is
followed by the instruction sequences of R1 and R2 with a Jump instruction in
between. This Jump has a target to the instruction that follow right after the last
instruction of R2. This achieves the goal of alternation: either only instructions of
R1 or R2 are executed, but not both. Regarding the length of alternation regular
expression, it equals to the lengths of instruction sequences of both R1 and R2
plus 2 (for added Split and Jump instructions).

• Kleene star R∗ has three parts: first instruction in the sequence is a Split with
targets o+1 and o+2+ i. Here o+1 is the first instruction of R and o+2+ i is
right after the last instruction of R∗. Then, the instruction sequence of R follows
the Split instruction. Finally, the instruction sequence of R∗ ends with a Jump

instruction, pointing back to the first instruction of R∗, which in this case is the
Split. So, this Jump achieves the goal of executing R more than once and the
Split instruction with the target outside R∗ allows for R not to be run at all.
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The length of the instruction sequence of R∗ equals to the length of instruction
sequence of R plus 2 (for added Split and Jump instructions).

• R? is generated as follows: first instruction in the sequence is a Split with targets
o+1 and o+1+ i, which is then followed by the instruction sequence of R. Here
o+1 is the first instruction of R and o+1+ i is the instruction that follows the last
instruction of R?. This Split achieves the intended goal of the operator: either
instruction sequence of R is run or it gets skipped. The length of the instruction
sequence of R? equals to the length of instruction sequence of R plus 1 (for the
added Split instruction).

• R+ is similar to R? and has two parts as well: instruction sequence of R is followed
by a Split instruction with targets o and o+1+ i. Here o is the first instruction
of R and o+1+ i is the instruction that follows the last instruction of R+. Having
this Split instruction ensures that the instruction sequence of R is run either once
or more than once. The length of the resulting instruction sequence equals to
the length of instruction sequence of the sub-expression R plus 1 (for the added
Split instruction).

3.3.1.1 Code

The translation from the regular expression to the instructions happens in the function
compile. It takes in a regular expression in the format described in Section 3.1 and
outputs an array of instructions.

let compile : Regex.t -> Inst.t array

= fun regexp ->

let dummy = Inst.Char ’0’ in

let insts = Array.make (program_length regexp + 1) dummy in

let ptr = ref 0 in

let rec compile : Regex.t -> Inst.ptr ref -> Inst.t array -> unit

= match regexp with

(* Recursive compilation *)

in

compile regexp ptr insts;

Array.set insts !ptr Inst.Match;

insts

First, it creates an appropriately sized array with dummy values, which then will be
replaced by actual instructions during compilation. It is filled with dummy values
because OCaml does not allow uninitialised data. To calculate the needed size of the
array based on the given regular expression, program_length is used, which is the
transliteration of the definition in Figure 3.3:

let rec program_length : Regex.t -> int = function

| Regex.Eps -> 0

| Regex.Char _ -> 1

| Regex.Seq (e, e’) -> program_length e + program_length e’

| Regex.Alt (e, e’) -> 2 + program_length e + program_length e’

| Regex.Star e -> 2 + program_length e
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| Regex.Opt e -> 1 + program_length e

| Regex.Plus e -> 1 + program_length e

In addition, compile initializes a pointer that points to the next available slot in the array
of instructions. Since during compilation the array of instructions is not filled in linear
fashion, this pointer allows avoiding backtracking.

The actual compilation happens in the recursive function compile, which is parameter-
ized by the regular expression being compiled, an instruction pointer, and the instruction
sequence array. It matches the regular expression compiled with all possible options
and compiles them individually.

First, empty expressions are skipped, exactly as formally defined in Figure 3.2:

| Regex.Eps -> ()

A single character gets directly translated to Char instruction, exactly as formally defined
in Figure 3.2:

| Regex.Char ch ->

Array.set insts !ptr (Inst.Char ch);

incr ptr

For sequence, both of the sub-expressions are compiled in turn, exactly as formally
defined in Figure 3.2:

| Regex.Seq (e, e’) ->

compile e ptr insts;

compile e’ ptr insts

As for alternation, it is a bit more complicated. First, both sub-expressions of the
alternation are compiled separately and the positions of their instructions are saved.
Then, there is enough information to finally generate the Split and Jump instructions at
their appropriate positions in the instruction array. This slightly differs from the formal
translation rule in Figure 3.2. We choose not to compute the length of the instruction
sequences of the sub-expressions, because it would lead to wasteful recomputation
all the time. Instead, we imperatively keep track of the offset pointer, remembering
the required positions for the Split and Jump instructions, whose targets might not be
known at first.

| Regex.Alt (e, e’) ->

let split_pos = !ptr in

incr ptr;

(* Compile e. *)

compile e ptr insts;

let jump_pos = !ptr in

incr ptr;

(* Compile e’. *)

let e’_pos = !ptr in

compile e’ ptr insts;

(* Generate the Split instruction. *)
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let split = Inst.Split (split_pos+1, e’_pos) in

Array.set insts split_pos split;

(* Generate the Jump instruction. *)

let jump = Inst.Jump !ptr in

Array.set insts jump_pos jump

For Kleene star, first the position of the Split instruction is saved. Then, the regular
expression is compiled and the Split instruction is generated at the saved position
together with the Jump instruction. Once again, it closely follows the formal definition
in Figure 3.2, but instead saving the position for Split and generating it later, rather
than wastefully calculating the instruction sequence length of the sub-expression.

| Regex.Star e ->

let split_pos = !ptr in

incr ptr;

(* Compile e. *)

compile e ptr insts;

(* Generate the Jump instruction *)

let jump = Inst.Jump split_pos in

Array.set insts !ptr jump;

incr ptr;

(* Generate the Split instruction at the correct position *)

let split = Inst.Split (split_pos+1, !ptr) in

Array.set insts split_pos split

Similarly, for both ? and + operators, a position required for the Split instruction is
first saved, then the regular expression is compiled and Split instruction is generated.
Once again it slightly differs from the formal definition in Figure 3.2. Required position
used by Split instruction is calculated later rather than computing it immediately by
unnecessary calculating the length of the sub-expression.

| Regex.Opt e ->

(* Save the position for split instruction *)

let split_pos = !ptr in

incr ptr;

(* Compile e *)

compile e ptr insts;

(* Generate the Split instruction *)

let split = Inst.Split (split_pos+1, !ptr) in

Array.set insts split_pos split

| Regex.Plus e ->

(* Save the position for split instruction *)

let split_beg = !ptr in

(* Compile e *)

compile e ptr insts;

incr ptr;

(* Generate the Split instruction *)

let split = Inst.Split (split_beg, !ptr) in
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Array.set insts (!ptr - 1) split

3.3.1.2 Asymptotic complexity

Since each regular expression symbol is only processed once in constant time, it is
apparent that the asymptotic complexity depends on the length of the given regular
expression and is O(n), where n is the number of symbols in the regular expression,
except for the brackets.

Our particular implementation also exhibits no wasteful computation. It avoids recur-
sively calculating the lengths of sub-expressions (or reindexing all the instructions at
the end all together) by leaving the gaps in the instruction sequence during compila-
tion when the required indexes of instructions are not known yet. Gaps get filled in
immediately when the required indexes get computed.

3.3.2 Executing the instructions

The main idea is that the VM maintains the list of all threads at any given point. The
VM reads characters one by one and for each of them executes all the threads.

For maintaining the list of threads, we implement ThreadList:
module ThreadList = struct

module ThreadSet = Set.Make(Int)

(* A ThreadList is a pair:

- container contains Thread objects. We wrap Thread objects in

an Option type to be able to represent the absence of a thread.

- next keeps track of the next free cell in ‘container’.

- added keeps track of all the threads that have already been

added to the container *)

type t = { container: Thread.t option array

; mutable next: int

; mutable added: bool array}

let make : int -> t

= fun size ->

{ container = Array.make size None

; next = 0

; added = Array.make size false }

let add : t -> Thread.t -> unit

= fun ts t ->

if not (Array.get ts.added t) then

(Array.set ts.container ts.next (Some t);

ts.next <- ts.next + 1;

Array.set ts.added t true)

(* This function provides an iterator for a ThreadList. It relies on

the fact that ‘container’ and ‘next’ are mutably updated, as the list

might growing during the iteration *)
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let iter : (Thread.t -> unit) -> t -> unit

= fun f ts ->

let rec iter i f ts =

if i < ts.next

then ( f (Option.get (Array.get ts.container i))

; Array.set ts.container i None

; iter (i+1) f ts )

in

iter 0 f ts

let clear : t -> unit

= fun ts ->

ts.next <- 0;

Array.fill ts.added 0 (Array.length ts.added) false;

end

ThreadList essentially keeps a list of threads and provides a way to add a new thread
to the list, iterate over the list or simply clear it. It is filled with None at first and next is
used to keep track where the next free space is in the list (in this case a cell with value
None). To make sure that for each character each instruction is only run once, added
map is used.

The function add in ThreadList first checks if the thread that is being added has not
been already added to the list. This is done by checking added map. If it was not added
before, then the new thread is added to the list at the place as indicated by next. next
and added are updated accordingly.

The iterator for ThreadList is provided by the function iter. It applies the given
function to each element of the list. By starting at index 0, it goes up the list until a free
slot in the list is reached as indicated by next. Since the list of threads can grow during
the iteration, it is important that both the list and next are mutably updated.

The matching happens in the function matches:

let matches : Inst.t array -> string -> bool

= fun insts str ->

let exception Match in

let rec exec : ThreadList.t -> ThreadList.t -> Inst.t array -> string

-> int -> unit

= fun clist nlist insts str sp ->

if sp <= String.length str then

(ThreadList.iter

(fun thread ->

let pc = thread in

match Array.get insts pc with

| Inst.Char ch ->

if (sp < String.length str) && (String.get str sp) = ch

then ThreadList.add nlist (Thread.make (pc+1))

| Inst.Match ->

if sp = String.length str then raise Match
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| Inst.Jump ptr ->

ThreadList.add clist (Thread.make ptr)

| Inst.Split (ptr, ptr’) ->

ThreadList.add clist (Thread.make ptr);

ThreadList.add clist (Thread.make ptr’))

clist;

ThreadList.clear clist;

exec nlist clist insts str (sp+1))

in

try

let pc = 0 in

let clist = ThreadList.make (Array.length insts) in

let nlist = ThreadList.make (Array.length insts) in

ThreadList.add clist (Thread.make pc);

exec clist nlist insts str 0;

false

with Match -> true

The function matches takes in a list of instructions and an input string and outputs
boolean value if the given string matches the regular expression that is represented by
the given list of instructions. It calls the recursive function exec with the current list of
threads (which at the start contains the first instruction in the list), a list of instructions
for the next character in the input string (which initially is empty), a list of instructions,
the input string itself and the index of the current character that is being processed (at
the start set to zero). For each of the characters, it iterates over the current list of threads
and executes the instructions one by one. Important thing is that the current list of
threads continues growing during the execution of instructions.

So, for Char instruction, if the current character in the input string matches the character
that is expected by the instruction, then a new thread is added to the list of threads that
will be executed on the next iteration.

For Match instruction, if the whole input string has been processed, it means there is a
match and the loop is exited with an exception.

For Jump instruction, a new thread is added to the current list of threads with the
appropriate program counter (index to the instruction in the instruction list).

For Split instruction, two new threads are added to the current list of threads with
appropriate program counters, as defined by the Split itself.

At the end of each iteration, the nlist list of threads (generated by Char instructions)
becomes the new current list of threads, string pointer is advanced by one, and a new
iteration happens.

3.3.2.1 Asymptotic complexity

Having at most n instructions means at most n threads can be active at once. In addition,
by making sure that a thread can only appear in the thread list once, each thread can
only be executed once for each character. Given that there are m characters in the input
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string and processing single character takes O(1) of time, it means that the running time
of this VM approach is O(nm).

3.4 Integration into Links

We make a prototype of our code integration into Links, as our implementation does
not currently support all the required features to fully replace Links’ implementation of
regular expressions. We choose to integrate our VM implementation rather than NFA,
as it is more efficient and easier to extend later by adding more bytecode instructions.

First, we package our implementation as a library vmregex and include it in Links. Then,
we make a runtime flag --virtual-machine-regex for using our regular expression
implementation. When Links desugars regular expressions, it chooses one of the
primitive binary functions to do the regular matching, and their names end in tilde. So,
we also add a new function and name it vtilde. When our newly created flag is set, it
is the function that gets used.

3.4.1 Server tier

For the server tier, we implement the function vtilde similarly as tilde is implemented.
First, the Links regular expression is compiled into our representation of regular ex-
pressions using Regex.compile_foreign. The resulting regex is then compiled into
instruction list regex’ using our library function Vmregex.compile. Finally, Vmregex.
matches from our library is called with the instruction list regex’ and unboxed string
input. The resulting bool value is then boxed.

(* core/lib.ml *)

("vtilde", (p2 (fun s r ->

let regex = Regex.compile_foreign (Linksregex.Regex.ofLinks r) in

let regex’ = Vmregex.compile regex in

let string = Value.unbox_string s in

Value.box_bool (Vmregex.matches regex’ string)),

datatype "(String, Regex) -> Bool", PURE));

Here is the function compile_foreign that compiles from the Links representation of
regular expressions (defined here as regex) to our representation. For this prototype, we
throw an error if we encounter regular expressions that are currently not supported by our
implementation. For most cases there is a direct conversion from Links representation
to ours, except for Simply strings that have to be exploded into characters and combined
using Seq.

(* core/regex.ml *)

type repeat = Star | Plus | Question

and regex = | Range of (char * char)

| Simply of string

| Quote of regex

| Any

| StartAnchor
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| EndAnchor

| Seq of regex list

| Alternate of (regex * regex)

| Group of regex

| Repeat of (repeat * regex)

| Replace of (regex * string)

(* function to compile from Links regex representation to ours *)

let compile_foreign : regex -> Vmregex__Regex.t = fun r ->

let rec compile_simply = function

| [] -> Vmregex__Regex.Eps

| c :: [] -> Vmregex__Regex.Char c

| c :: cs -> Vmregex__Regex.Seq

(Vmregex__Regex.Char c, compile_simply cs) in

let rec compile = function

| Simply s -> compile_simply

(List.init (String.length s) (String.get s))

| Seq [] -> Vmregex__Regex.Eps

| Seq (r :: rs) -> Vmregex__Regex.Seq (compile r, compile (Seq rs))

| Alternate (r1, r2) -> Vmregex__Regex.Alt(compile r1, compile r2)

| Group s -> compile s

| Repeat (Star, r) -> Vmregex__Regex.Star(compile r)

| Repeat (Plus, r) -> Vmregex__Regex.Plus(compile r)

| Repeat (Question, r) -> Vmregex__Regex.Opt(compile r)

| _ -> failwith "Not implemented"

in compile r

3.4.2 Client tier

For the client tier, we first compile our OCaml implementation into JavaScript code
using Js_of_ocaml compiler [23] and include the code while rendering webpages in
Links.

We implement the function _vregexCompile to convert Links representation of regular
expressions back to their string representation.

function _vregexCompile(expr) {

switch (expr._label) {

case "Simply": return expr._value;

case "Group": return "(" + _vregexCompile(expr._value) + ")";

case "Seq": {

const regexes = _$List.toArray(expr._value);

let acc = "";

for (let regex of regexes) {

acc = acc + _vregexCompile(regex);

}

return acc;

}

case "Repeat": {
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let op;

switch (expr._value[1]._label) {

case "Plus": op = "+"; break;

case "Star": op = "*"; break;

case "Question": op = "?"; break;

}

const regex = _vregexCompile(expr._value[2]);

return regex + op;

}

case "Alternate": {

const first = _vregexCompile(expr._value[1]);

const second = _vregexCompile(expr._value[2]);

return first + "|" + second;

}

default: return "";

}

return null; // Can never be reached

}

Then, similarly as with server tier, we implement our newly added function vtilde in
JavaScript. It calls our newly created _vregexCompile to get the string representation of
a regular expression. After that, we first find all our library functions for parsing, com-
pilation, and matching in the global jsoo_runtime. All these functions are registered
in the caml_global_data under the library name Vmregex. To get a specific function
from the library, we also use their position in the original code as index. In addition,
we make a reference of a helper function caml_call_gen that is used to call our library
functions and caml_string_of_jsbytes for converting strings into a right form. Finally
having all these functions, we then parse the regular expression, compile it into a list of
instructions and do the matching on the given input string.

(* lib/js/jslib.js *)

function _vtilde(s, regex) {

const r = _vregexCompile(regex);

const caller = globalThis.jsoo_runtime.caml_call_gen;

const parser =

globalThis.jsoo_runtime.caml_global_data[’Vmregex__Regex’][2];

const compiler =

globalThis.jsoo_runtime.caml_global_data[’Vmregex’][2];

const matcher =

globalThis.jsoo_runtime.caml_global_data[’Vmregex’][3];

const to_string = globalThis.jsoo_runtime.caml_string_of_jsbytes;

const parsed = caller(parser, [to_string(r)])[1]

const compiled = caller(compiler, [parsed])

const matched = caller(matcher, [compiled, to_string(s)])

return matched

}

const vtilde = _$Links.kify(_vtilde);
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3.4.3 Example

We use the example Links program below for testing our implementation of regular
expressions in Links. It uses the evil regex ˆ (a+)+ $ as introduced in Chapter 2. It
renders a simple page with an input box for the input string and a button to run the
matching. The result of the matching is then printed in the developer console. While
running with the original implementation, the browser hangs on the specifically crafted
input. When we set the flag to use our implementation of regular expressions, the
matching completes successfully. Despite that, our implementation is still vulnerable
to evil regex that would exploit our recursive compilation function. To avoid that, we
consider rewriting the parser into continuation-passing style in the future.

# Input: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaab

fun testRegex(s) client {

var result = s =~ /^(a+)+$/;

if (result) print("True")

else print("False")

}

fun testRegexForm(_) {

page <#>

<input id="regexp" value="" />

<button l:onclick="{testRegex(getInputValue("regexp"))}">Click

me!</button>

</#>

}

fun main() {

addRoute("/", testRegexForm);

servePages()

}

main()
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Benchmarks

In this chapter we first start by discussing the methodology of executing the benchmarks
and what measures were taken to reduce the noise in the results. Then, we compare the
performance of two implementations as described in Chapter 3 (the NFA implementation
and VM implementation) against the implementation of regular expressions in the
widely used V8 JavaScript engine [12]. Version 4.08.1 of OCaml together with version
10.8.95 of V8 are used for these benchmarks.

4.1 Methodology

Input VM

NFA . . .

1st run

10th run

. . .

1st run

10th run

1st run

. . .

10th run

Warm upV8

Median

Median

Median

Output

Figure 4.1: Execution of a single benchmark

There are in total 40 benchmarks, with regular expressions and string inputs stored in
separate files. The experiment’s pipeline is as follows (Figure 4.1): a Python script
runs the benchmark programs and output their results in a CSV file. Each benchmark

32
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is run 10 times. On each run we measure both the compilation time and the execution
time for the respective regex. We then summarize the result by computing the median
compilation time and median execution time. We choose to use the median as our
metric as it is robust against outliers (in contrast the average is sensitive to outliers).

We take some measures to eliminate potential noise from the results. Some sources of
noise and the solutions:

• Garbage collection: both OCaml and JavaScript have garbage collection, which
inadvertently increase the time of execution. Currently, both OCaml [21] and
JavaScript [3] use mark-and-sweep garbage collector. The collector periodi-
cally scans the memory to identify the objects that are still in use by the pro-
gram. Then, the algorithm sweeps through the memory and safely reclaims
all the objects not used by the program. To minimize the impact of garbage
collection on the results, we decided to considerably increase the size of the
heap. Ideally, with a large enough heap size the garbage collector would
not need to collect any garbage during the run time of the experiments. In
OCaml, we fix the minor heap size to 4 GB by setting the environment variable
OCAMLRUNPARAM="s=4G" [21]. In JavaScript, we fix the heap size to 4 GB by
setting the runtime flag --max-old-space-size=4096.

• JIT warm-up: both OCaml and JavaScript have pretty different execution en-
vironments: OCaml gets compiled into native machine code, while JavaScript
is typically executed in a virtual machine that uses a Just-in-time (JIT) compiler.
We try to bridge this gap by “warming up” [2] the JIT compiler. Running the
program multiple times allows for the JIT compiler to “learn” more about how
the program behaves, which leads to optimizations that reduce the execution time.
Thus, we run each benchmark three times before taking any measurements, which
should be sufficient for the JIT compiler to warm-up and for the execution of
benchmarks to be optimized as much as possible.

• Operating system activity: due to different background tasks that might be
running together with the benchmarks, it is important to run the benchmarks
multiple times. We choose to run the benchmarks ten times and take the median
value for execution and compilation times. Taking a median instead of an average
prevents from outliers (that appear for various reasons) significantly skewing the
results.

4.2 Results

In this section we examine the performance of regular expression matching on three
different kinds of expressions: simple regular expressions, evil regex as discussed in
Section 2.2.4, and regular expressions that often appear in real-world use.

4.2.1 Simple regular expressions

First, we used some simple regular expressions to test the performance of imple-
mentations solely on the size of input string. This includes a∗, [a− z]∗, [a−
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z]∗somerandomwords[a− z]∗ with results in Tables 4.1, 4.2, 4.3 respectively. We use
[a− z] notation for easier reading here, although in benchmarks an alternation of all the
characters is used (a ‖ b ‖ c ‖ d ‖ ... ‖ z) across all the implementations.

It is apparent that the execution time for both NFA and VM implementations grow lin-
early together with the input string size, while the execution time of V8 implementation
only grows logarithmically. In addition, it can be seen that the execution time of NFA
starts of large in comparison to VM implementation and stays about 100 to 1000 times
larger.

VM implementation has the best compilation time across all these benchmarks and the
best execution time for input sizes up to around 100 characters. For larger inputs, V8
has the best execution time.

NFA VM V8
Compile Match Compile Match Compile Match

1 character 4 5 3 2 25 37
10 characters 4 18 3 2 25 38
100 characters 5 137 3 10 26 38
1000 characters 5 1086 3 85 24 71
10000 characters 4 7399 2 821 25 76
100000 characters 4 64798 3 5866 24 126

Table 4.1: Performance of a∗ based on input size (in microseconds)

NFA VM V8
Compile Match Compile Match Compile Match

1 character 559 953 4 4 29 41
10 characters 555 5378 4 12 29 43
100 characters 532 46916 4 96 31 44
1000 characters 526 449908 4 942 29 86
10000 characters >1 second 5 59466 36 313
100000 characters >1 second 4 97536 28 1600

Table 4.2: Performance of [a− z]∗ based on input size (in microseconds)

NFA VM V8
Compile Match Compile Match Compile Match

1 character 2130 17759 6 28 32 56
10 characters 2134 30390 7 44 35 59
100 characters 2088 182292 8 227 34 66
1000 characters >1 second 7 1840 38 123
10000 characters >1 second 7 20322 33 348
100000 characters >1 second 8 187103 28 2040

Table 4.3: Performance of [a− z]∗somerandomwords[a− z]∗ based on input size (in
microseconds)
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4.2.2 Evil regex

As described in the Section 2.2.4, some implementations of regular expression matching
perform poorly given carefully crafted inputs. Two different regular expressions have
been chosen to test this. First regular expression is (a+)+. As it can be seen in Table 4.4
and Figure 4.2, V8 performs poorly, with its execution time growing exponentially given
increasing input size. In this case, 26 characters are enough for the execution time to be
greater than one second. In comparison, VM implementation’s execution time does not
grow and stays very minimal: only a few microseconds. NFA execution time also stays
the same, although it is about 100 times slower than VM implementation. So for this
benchmark, the VM implementation has the best both compilation and execution time.

Another evil regex is ((((((((a ‖ a?)+ ‖ a?)+ ‖ a?)+ ‖ a?)+ ‖ a?)+ ‖ a?)+ ‖ a?)+ ‖ a?)+.
It was artificially crafted to specifically break the NFA implementation. It can be seen
from Table 4.5 and Figure 4.3 that NFA implementation indeed breaks on this regular
expression: even on small input sizes it takes more than one second to finish execution.
Comparing VM and V8 implementations, it can be seen that the execution time for V8
implementation starts high at around 5 milliseconds, while for VM implementation the
execution time starts small and grows larger as the input size increases. At around 1000
characters, the execution time of VM reached the execution time of V8 implementation
and then grows beyond it. So, it can be said that the VM approach has the best
compilation time once again across all the benchmarks, with execution time being the
best until the input size gets to around 1000 characters, where V8 then takes the lead.

NFA VM V8
Compile Match Compile Match Compile Match

1 character 20 4 4 2 29 46
5 characters 20 104 3 2 29 48
10 characters 20 262 4 2 32 71
15 characters 18 310 4 3 29 835
20 characters 18 417 4 3 30 26305
21 characters 20 484 4 3 30 50090
22 characters 20 509 3 4 29 108534
23 characters 20 504 4 5 30 211592
24 characters 20 532 4 5 30 435571
25 characters 21 558 3 4 29 888308
26 characters 19 560 4 5 >1 second

Table 4.4: Performance of (a+)+ based on input size (in microseconds)
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NFA VM V8
Compile Match Compile Match Compile Match

1 character 35078 195274 5 3 29 6948
5 characters 31820 572784 6 8 29 6842
10 characters >1 second 5 12 29 6744
20 characters >1 second 4 18 35 5790
30 characters >1 second 6 43 45 6675
100 characters >1 second 5 90 34 7549
1000 characters >1 second 6 910 30 1191
10000 characters >1 second 6 8952 31 1324
100000 characters >1 second 6 128608 56 8187

Table 4.5: Performance of ((((((((a ‖ a?)+ ‖ a?)+ ‖ a?)+ ‖ a?)+ ‖ a?)+ ‖ a?)+ ‖ a?)+ ‖
a?)+ based on input size (in microseconds)

Figure 4.2: Performance of (a+)+ based on input size (in microseconds, logarithmic
scale)
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Figure 4.3: Performance of ((((((((a ‖ a?)+ ‖ a?)+ ‖ a?)+ ‖ a?)+ ‖ a?)+ ‖ a?)+ ‖ a?)+ ‖
a?)+ based on input size (in microseconds, logarithmic scale)

4.2.3 Real world examples

Lastly, some real world examples have been used for testing the performance. This
includes regular matching URLs and email addresses. As it can be seen from Ta-
ble 4.6, compilation time is similar between VM and V8 implementations, while NFA
implementation takes about 100 times longer to compile. In terms of the execution
time, once again VM and V8 implementations are similar in performance, while NFA
implementation is about 100 to 1000 times worse than both. Overall, it is apparent that
the VM implementation outperforms other implementations in both compilation and
execution time.

NFA VM V8
Compile Match Compile Match Compile Match

Email address 3388 54664 10 69 70 109
URL 3853 30018 6 36 38 61

Table 4.6: Performance of real world examples (in microseconds)
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Conclusion

In this chapter, we will summarize both implementations of regular expressions and
how they perform relative to each other and V8 JavaScript engine. In addition, we will
outline the potential future work and what could be improved.

5.1 Summary

This report presents two implementations of regular expressions in OCaml. First
approach is based on NFA and Thompson’s construction. Thompson’s construction
algorithm converts the given regular expression into an NFA using the five construction
rules. The resulting NFA’s number of states is proportional to the number of symbols in
the regular expression. By simulating NFA and only tracking the states that are active
rather than the paths being taken, it is possible to reach the asymptotic complexity that
is linear to the length of the regular expressions times the length of input string.

Second approach to implementing regular expressions is essentially lowering the NFA
approach as a virtual machine, where each thread corresponds to an exploration of a
distinct choice in the NFA transition graph. Regular expressions get compiled into
instructions given predefined rules. Then, VM executes the instructions while keeping
track of the threads that are spawned by the instructions. By executing the threads in
lock-step while reading characters one-by-one, it is possible to reach the asymptotic
complexity that is linear to the length of the regular expressions times the length of
input string.

After implementing the regular expressions in both of these approaches, we measured
and compared the performance of both of them in comparison to the widely used
V8 JavaScript engine. It appears that for simple regular expressions, such as a∗,
NFA performs poorly, VM performs the best until the input size gets to around 1000
characters, from then on V8 has the best execution time from all the implementations,
with VM approach’s execution time growing linearly with the input string length. The
poor scaling of VM approach might be due to how we implemented the handling of the
input string. For evil regex, it can be seen that there exists some regular expressions,
for example (a+)+, that are able to break the V8 engine, while both NFA and VM
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continue to work correctly. Nevertheless, there exist regular expressions that also break
the NFA approach, so overall VM is the most resilient against evil regular expressions.
Lastly, for real-world examples, such as matching emails and URLs, it appears that
VM approach is quite competitive in comparison to V8 implementation, as it has its
execution time matching or lower than V8.

Finally, as a proof of concept, we integrated our implementation into Links. By creating
an example Links program with an evil regex (a+)+, we show that our implementation
can successfully finish regular matching, while the original implementation would hang
the browser.

5.2 Future work

There are multiple interesting future directions to explore following from this disserta-
tion work.

Alternative implementation techniques Having more implementations of regular
expressions, especially ones that have a completely different approach to solving
regular expression matching and does not involve NFA. This could include Brzozowski
derivative, which was introduced at the end of 1950s by multiple authors [27, 26,
8]. Brzozowski derivative can be used to construct regular expression first without
generating NFA. The idea is to define a derivative for a language that could be repeatedly
applied for each symbol in the alphabet. This leads to an algorithm that can be used
to decide whether an input string is in the given language described by the regular
expression.

Performance analysis Investigating the cause of poorer performance than expected
of the VM approach. It was expected that the performance of VM approach would stay
closer to the V8 implementation for larger inputs. This might be due to inefficiencies
in handling the string input in our implementation. In addition, we expected for the
NFA implementation to be closer to the VM implementation. This discrepancy could
be possibly explained by the inefficient implementation in how transitions in the NFA
are calculated.

Database tier Implementing regular expressions in the database tier and making sure
that the engine matches what both server tier and client tier have. This could be achieved
by compiling the OCaml source code not only to JavaScript for the client tier, but also to
SQL for the database tier. The compilation for the database tier would be more complex,
in contrast to using the existing compiler from OCaml to JavaScript for the client tier.

Extending the regular expression language Expanding the feature set of the cur-
rent implementations. Current implementations as described in Chapter 3 only support
a limited number of special symbols. There is a potential for such constructs:

• Character classes: character classes are used to more easily match a specific
set of characters without the need to use alternations. For example [a− z] could
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be used to match all lower case ascii letters. Another popular symbol is a dot .,
which matches against any character.

• Anchors: anchors allow matching specific position in the input string. For
example, an anchor symbol ˆ matches the beginning of the line, while anchor
symbol $ matches the end of the line.

• Backreferences: backreferences allow to reference a previously matched group
within the same expression. The matched text can then be used as a variable. For
example (abc)\1 would match abcabc, as \1 references (abc).

• Lookarounds: lookarounds are used for matching a pattern if and only if it
is followed or preceded by other pattern. For example ((? <= abc)de f ) only
matches de f if it is preceded by abc.

• Escaped characters: currently, special characters such as ∗ and + are reserved,
but it would be useful to have an ability to actually match these characters in text
as well.
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